a2 United States Patent

Macchiano et al.

US009300592B2

US 9,300,592 B2
Mar. 29, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

PHYSICAL PORT SHARING IN A LINK
AGGREGATION GROUP

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Angelo Macchiano, Apalachin, NY
(US); Bruce H. Ratcliff, Red Hook, NY
(US); Richard P. Tarcza, Kingston, NY
(US); Susan M. Farrell, Binghamton,
NY (US); Mary E. Carollo, Ithaca, NY
(US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 98 days.

Appl. No.: 14/212,228

Filed: Mar. 14,2014
Prior Publication Data
US 2015/0263991 Al Sep. 17, 2015
Int. CI.
HO4L 12/933 (2013.01)
HO4L 12/931 (2013.01)
HO4L 12/891 (2013.01)
HO4L 12/24 (2006.01)
HO4L 12/709 (2013.01)
U.S. CL
CPC HO4L 47/41 (2013.01); HO4L 41/0654

(2013.01); HO4L 45/245 (2013.01); HO4L
49/10 (2013.01); HO4L 49/354 (2013.01);
HO4L 49/70 (2013.01)
Field of Classification Search
CPC ... HO4L 45/245; HO4L 45/28; HO4L 49/70,

HO4L 12/4641; HOA4L 45/586; HO4L 49/10;
HO4L 49/354; HO4L 47/41; HO4L 41/0654
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,619,771 B2* 12/2013 Lambethetal. 370/389
8,929,255 B2* 1/2015 Hernandez etal. . .. 370/259
9,013,986 B2* 4/2015 Yuetal. ..o 370/228

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2005018174 Al
WO 2010111142 Al
WO 2012099858 Al 7/2012
WO 2012099946 Al 7/2012

OTHER PUBLICATIONS

2/2005
9/2010

Office Action in U.S. Appl. No. 14/561,750, dated Oct. 7, 2015, pp.
1-22.

(Continued)

Primary Examiner — Ayaz Sheikh

Assistant Examiner — Debebe Asefa

(74) Attorney, Agent, or Firm — Steven Chiu, Esq.; Matthew
M. Hulihan, Esq.; Heslin Rothenberg Farley & Mesiti P.C.

(57) ABSTRACT

Virtual switches are established in a host system of a com-
puting environment. Each virtual switch of the virtual
switches includes a respective virtual switch port grouped
within a shared port group of virtual switch ports. The virtual
switch ports of the shared port group are in communication
with a common physical network adapter of the host system.
The virtual switch ports of the shared port group share a single
physical port of the physical network adapter as part of a
common physical link aggregation group (LAG).

19 Claims, 34 Drawing Sheets

CPU

[~-102

f-108

MEMORY

EXTERNAL |/O DEVICES
AND DATA

[™~—114

US 9,300,592 B2
Page 2

(56)

2005/0060427
2007/0183313
2008/0151916
2012/0287785
2013/0194914
2013/0250951
2013/0308649
2013/0315097
2013/0315234
2013/0336317
2013/0343395
2015/0263937
2015/0263970
2015/0263971

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

3/2005
8/2007
6/2008
11/2012
8/2013
9/2013
11/2013
11/2013
11/2013
12/2013
12/2013
9/2015
9/2015
9/2015

Phillips et al.
Narayanan et al.
Jetcheva et al.
Kamble et al.
Agarwal et al.
Koganti

Cheng et al.
Yang et al.
Kamble et al.
Mithyantha et al.
Kamble et al.
Macchiano et al.
Macchiano et al.
Macchiano et al.

OTHER PUBLICATIONS

Qian, Hangwei, et al., “Exploring the Network Scale-out in Virtual-
ized Servers”, InProceeding of International Conference on Soft
Computing and Software Engineering (SCSE 2013).

Azodolmolky, Siamak, et al., “SDN-based cloud computing net-
working”, In Transparent Optical Networks (ICTON), 2013 15th
International Conference on, pp. 1-4. IEEE, 2013.

Joseph M. Blanquer et al., “Fair Queuing for Aggregated Multiple
Links”, 2001 ACM.

Dhananjay S. Phatak et al., “A Novel Mechanism for Data Streaming
Across Multiple IP Links for Improving Throughput and Reliability
in Mobile Environments”, 2002 IEEE.

* cited by examiner

U.S. Patent

Mar. 29, 2016 Sheet 1 of 34

US 9,300,592 B2

CPU

102

1
FOB

10

MEMORY

112

!

!

EXTERNAL I/O DEVICES
AND DATA

~—114

FIG. 1

US 9,300,592 B2

Sheet 2 of 34

Mar. 29, 2016

U.S. Patent

¢ 9Old
r--—-———"™"FF"FF™~—~"FT —HfF—F/7FTY—™7FfF7F7—HF7—/"F7F"F"7"F " ™"7/7"7F~—¥YF~—/—"7—YVF—/ —7YF—/ 7Y ——— 1
_ _
_ _
_ _
_ 0z 3 "ddv |
| uNdd ™ NNNA ¢ SO~z _
| 1EE= |
| 022 vz |
| L ¥0SS3004d _
_ 012]| ¥ Q'ddv |
_ ZNdD NNN.A : ¢SIOMH~Y2e _
| 0 ddv _
| o Ve . |
_ I¥A oz | |
__ W3LSASEN

_ 5z HOSIAMIJAH — mo_m s
| L NdD zzz<| 1 S0H~vez |
_ V 'ddv _
| vz |
| e _
| olz] TOSSIO0N SNOLLILYYd T¥OI90T] _
_ 0Ndd a1z 4O SINIHOWW _
_ WNLIA —80Z _
_ _
_ _
- - _1
v | (0dD) X3T1dWOD HOSSID0Hd TWHINID

¥02T

S301A3Q
ol

U.S. Patent Mar. 29, 2016 Sheet 3 of 34 US 9,300,592 B2
300
332 334 336
NATIVE CPU MEMORY
INPUT / OUTPUT
310—1JREGISTERS ’EMgB’E‘,EOR
312j 308
FIG. 3A
r—304
3112 MEMORY
ety 7 °P
INSTRUCTION
4 | GUEST
352— | FIEJSTHl”,\\I'S nd INSTRUCTIONS
| ! | 386
| INSTRUCTION]| !
3541 TRQ(")‘S%JI'EON B INSTRUGTIONS
| |
I
EMULATION
360——/4'\ CONTROL :
| |_ROUTINE |
|

US 9,300,592 B2

Sheet 4 of 34

Mar. 29, 2016

U.S. Patent

9ty ~

v Ol

=

VIISA

HOLIMS ¥3NLYVd

Hd

9V _w»d P

U.A/<o<._

ayeEr~ oIN JIN [avev eyer~ QN JIN [BVEV
| ﬁwﬂ*] wﬂv
HOLIMS TVNLYIA HOLIMS TYNLYIA
1¥0d 1¥0d 1¥0d 1¥0d
YNITdN MNITdN 140d| | L¥Od| | 1¥0d YNITdN MNITdN 1¥0d| | L¥0d| | Ly¥0d
L] [] ® L] [J ®
w S~ — S~
qagev acev _‘ — _| =1e74 4 cey _‘ — _|
ENVER ¥IAYIS Y¥3AY3S ENVER YIAY3S NELYENS
ey ~ s g g S § S
qQozy qQocy qogy NOILILYVd TYOIO0TWAZ eggy eoct egzZy

US 9,300,592 B2

Sheet 5 of 34

Mar. 29, 2016

U.S. Patent

Y2G~

¢ Old
| Houms yaNLuvd
9¢s TVOISAHd
TP *+—von
¥eG~ OIN JN |~pgg
Mm wﬂm
HOLIMS TVNLYIA HOLIMS TVNLYIA
L¥0d 1¥0d 1¥0d 1¥0d
AN || iNMdn 130d| | 1od] | aod NTdN || INMdn 130d| | rod| |1a0d
: <~ d L : v) [
| e |
ages O | egcs oo | |
NEINES NEINES NEINES NEINES NETNES NEINES
a9z5 926 d9zG NOWLMVATVOIDOTWAZ egzg egzg 8926

US 9,300,592 B2

Sheet 6 of 34

Mar. 29, 2016

U.S. Patent

9 '9Old
OV1 WOISAHd ITONIS |~049
_
€9~ oN || ON |~peg
S — e I
“ Fe—m—ZooooToCTToCCoCo a 11
1 I — 11
1] |) ———— _— I“ _
[N e — i
Phr
e
11 1|
- HHHH-——-
||||| _I_, o
| "|_| ||||| [N
!
||
___ SYIAING LYOd INMAN 1779 94| suaama Lyod YNMdN
| 1 |
| ¥3AVINOILVZIVNLNIA | e AL #3aviNowvzivnLyia
_ | _ o Zv9 Zv9 o
il | ov9 0v9
_ _ _ = ™\
L dNo¥o dnoyo
_ .q_%&_p\,_w <] o BN_zom_._ozww Liod - .__._,\o&_p\,_w L gz9
_ || QFUVHS b a3uvHS
M ——_—— —
i I
_|7 YOSIAYIdAH - L > HOSIAYIAH L _l~ge9
L
_ 6€9
il NOILILYVd T¥OI901 29 y29~ NOILILYVd T¥OI901

US 9,300,592 B2

Sheet 7 of 34

L '9Old
HOLIMS
9€/ ~ HINIMYd
IVOISAHd
oL
€L~ ON JN pM$€.

8v. GES P

e — S e] S ——

Mar. 29, 2016

b-"zer | >~ A" zer | >~ A" zer | T~ A" zer | >~
M AN \\ A AN \\ M AN \\ M o
& oooo| [oos0] N [sooo|[& soso| N\ [E woeo|[& weo| N/ [& ooo| [ooso

\ \ |
140d 140d _ L¥0d 140d I _ L140d 1¥0d / | L140d 140d

U.S. Patent

yNdn || YNfdn |/ / MNdN || NN |/ / Ndn || Nmen | / YNITdN || YNIdN
/ / /
<~ QHOLMSA 7 SO OHOLIMSA 7 Mo gHOLMSA 7 Mo VHOLMSA 7
~ - ~ — ~ - P

~ o

—— —

/Ill\\ b — -~ o

—— — ———— -

8¢.

US 9,300,592 B2

Sheet 8 of 34

Mar. 29, 2016

U.S. Patent

8 9Old
HOLIMS
0c8~| WaNLuvd
WOISAHd
o8
qre8~1 OIN JN ~epeg
3 5 5 -
© 3 5 3
] Q o
¥ I3 HOLIMS TYNLYIA 3 I3 HOLIMS TVNLMIA
% vod || od 2 yvod || Luod
YNMdN || SINdn NMAN || ¥NITdn
[{ { [{ {
)) 0)) v
pzes o TA% qgee qces BCes egZe

U.S. Patent Mar. 29, 2016 Sheet 9 of 34

ESTABLISH VSWITCH UPLINK 902
PORT NETWORK CONNECTION

904

NETWORK
CONNECTION FOR A
MULTI-VSWITCH LAG
CONFIGURATION?

906
§

ISSUE NIC PRIMITIVE JOIN GROUP
TO CREATE/JOIN A LOGICAL GROUP

!

NETWORK CONNECTION 910
|S OPERATIONAL ™

!

REGISTER IEEE 802.3ad SLOW
PROTOCOL GROUP MAC ADDRESS
W/THE NIC. USE COMMON UNIQUE

SHARED PORT GROUP AT DEFINITION
AS THE ACTOR'S SYSTEM ID AND KEY

914

IS UPLINK PORT
THE ACTIVE PORT
CONTROLLER?

YES

IF NIC SELECTS THIS VSWITCH
UPLINK PORT AS THE ACTIVE PORT
CONTROLLER AS INDICATED IN
REPLY TO JOIN GROUP COMMAND,
THEN UPLINK PORT ASSUMES ROLE
AS ACTIVE LAG PORT CONTROLLER;
OTHERWISE UPLINK PORT
ASSUMES ROLE AS STANDBY LAG
PORT CONTROLLER

SYSTEM ID GENERATED AND STORED IN |.g12

)
908

916
¢

INITIATE AND MAINTAIN IEEE
800.3ad LACP PROTOCOL

| ACTIVATE PORT |~ 918

'

MARK PORT GROUP AS ACTIVE |~920

FIG. 9

US 9,300,592 B2

U.S. Patent Mar. 29, 2016 Sheet 10 of 34 US 9,300,592 B2

RECEIVE GROUP_STATE_CHANGE PRIMITIVE |~1002

1004 1 0()06

ASSIGN AS ACTIVE LAG
PORT CONTROLLER

l 1008
§

SIGNAL A LAG NEED TO TRANSMIT (NTT)

VIRTUAL PORT
ASSIGNED AS NEW
ACTIVE LAG PORT
CONTROLLER?

REPLACE CURRENT LIST OF GROUP
MEMBERS FOR THIS PORT GROUP |~-1010
WITH NEW LIST RETURNED BY NIC

'

GENERATE CHANGE IN CONFIGURATION L1012
INFORMATION MESSAGE TO OPERATOR

END

FIG. 10

U.S. Patent

RECEIVE LAG
SLOW PROTOCOL
ETHERNET FRAME

(ACP
ETHERNET .Y ES

Mar. 29, 2016

1116-A

~1102

UPLINK PORT
ACTIVE LAG PORT
CONTROLLER?

RECORD ACTOR
AND PARTNER
SYSTEM ID AND KEY

ETHERNET
FRAME?

Sheet 11 of 34

INITIATE MARKER ETHERNET
FRAME HANDLING

US 9,300,592 B2

RECORD PARTNER'S
LACP STATE

!

LACP SYNCHRONIZATION
CHECK

!

VERIFY PARTNER'S
LACP STATE

'

HANDLE POSITIVE OR
NEGATIVE LACP
RESPONSE

~1108

~1110

~1112

~1114

~1120

(B0)
FIG. 11

U.S. Patent Mar. 29, 2016 Sheet 12 of 34 US 9,300,592 B2

MULTI-VSWITCH
LAG MARKER
RESPONSE?

ETHERNET

YES

VSWITCH LAG
CONFIGURATION?

LAG PORT

1 2§06 CONTROLLER?

YES SEND IEEE
MARKER
RESPONSE TO
THE MARKER
JUST RECEIVED TRACK RESPONSE
FROM THE FORTHIS MARKERID | _ 4994
PHYSICAL SWITCH ON MULTI-VSWITCH
1210 PORT MARKER QUEUE

MARKER RESPONSE ~\ _NO ‘
SENT BY PHYSICAL
INCREMENT NUMBER
OF ENCAPSULATED
RESPONSES [~ 1226
RECEIVED
STANDBY
LAG PORT YES ' 12S22
CONTROLLER? 1228
SEND IEEE
LAG MARKER MARKER
RESPONSE RESPONSE
NO RECEIVED ROM EACH PDUTO
shEEQKLEARG STANDBY LAG PORT PHYSICAL
MARKER_ CONTROLLER? SWITCH PORT
TO ACTIVE
LAG PORT
CONTROLLER
12()1 4 Y + Yy 12()08 1 2830
INITFI{ETSI?:(TJT@%NG —>| DISCARD IEEE MARKER PDU | | DISCARD MARKER PDU

FIG. 12

U.S. Patent Mar. 29, 2016 Sheet 13 of 34 US 9,300,592 B2

INITIATE NETWORK CONNECTION
TERMINATION FOR EACH NETWORK |~1300
CONNECTION IN THE LAG

ISSUE NIC REMOVE

VSWITCH LAG
PORT PRIMITIVE [~ 1306

CONFIGURATION?

EXISTING METHOD TO
TERMINATE VIRTUAL SWITCH |~1304
UPLINK PORT CONNECTION

(&)
FIG. 13

U.S. Patent Mar. 29, 2016 Sheet 14 of 34 US 9,300,592 B2

TAKE-OVER
MAC ADDRESSES TO
PROCESS?

ALLOCATE NEW TAKE-OVER PSEUDO | _ 4404
NIC FOR NEXT MAC ADDRESS

#

STORE FAILING HOST'S MAC ADDRESS | _1406
RETURNED BY NIC IN NEW PSEUDO NIC

'

STORE OWNING NETWORK CONNECTION OF NEXT L1408
TAKE-OVER MAC ADDRESS IN NEW PSEUDO NIC

+

REGISTER MAC ADDRESSIN |_1410
VSWITCH'S LAN HASH TABLE

FIG. 14

US 9,300,592 B2

Sheet 15 of 34

Mar. 29, 2016

U.S. Patent

~—8LG1

Gl OI4
| !
3N3ND LNdLNO S.LHOd NIdN YHOMLIN
0LSE~| OLINIWVHOYLYQ 3HL IAOW OL 140d 1s3n9 HOSIAMAJAH
MSYL SNONOYHONASY J1VILINI V¥ OINI AWHOVLYQ JHL NO NOILNgIdLSId
9161~ 3HLIAON 0L MSVL ¥04 SSTHAQY
+ SNONOYHONASY OVIN S.LSOH ONITIvV4
ALVILINI JHL HLIM YHOMLAN
NOILNTOS3Y HO4 140d HOSIAYAdAH FHL OL
80GL~ MNITdN SHOLIMSAOL WYHOVLYA » OIN 0aN3Sd FHL WOH4
WYHOVY1YJ QYYMHOA advosia [90st WYHOY1vd ON3S
NOILYNILS3Q
Q3ANAINI OL
71G1~ WvdOVLYA ANIddV S3A

¢3N3ND LNdNI
S.L40d MNIdN
3H1 NO d3AIF03
WvHOvLYd

S3A

{I1avl
HSVH NV

SS34aav oviN
NOILVYNILS3A

ON
c0s1

(1avis)

SHILIMSA NI ONNO4

{SS3HAAvY OV
HINO-INVLV
NOILYNILS3A Sl

S3A

U.S. Patent

Mar. 29, 2016

TAKE-BACK

Sheet 16 of 34

US 9,300,592 B2

MAC ADDRESSES
TO PROCESS?

NEXT
TAKE-OVER MAC

LAN HASH TABLE?

DELETE PSEUDONIC
FOR NEXT TAKE-OVER
MAC ADDRESS

1604

ADDRESS FOUND IN VSWITCH'S

~ 1606

'

REMOVE NEXT MAC

ADDRESS FROM VSWITCH'S
LAN HASH TABLE

~1608

FIG. 16

US 9,300,592 B2

Sheet 17 of 34

Mar. 29, 2016

U.S. Patent

B2S.L1

Ll "Ol4 09/l
| Ll-/
\—
[_
_ | y
PreLl~ 3IvsO 3vS0 3vs0 IVS0 2oLl
+
| u
_
[| _
o | _ I3
s 1 1= =
~ _uwv [8 1 _w B9G/1
ass 12 1S avsLL 5 I mmEL evsL
N w)
‘G & |lLod ||u3ev |[C = B g || od [uzev | =
1od || 1dod || ON || Nww || S 1M0d [l 1dod || ON [fNww || B
MNAN|IYNEN[] A Al o~ MNOAN|PINCEN|] A A g
£ S X >
HOLIMSA TAI G ¥Yd1 3 1 HOLIMSA TAI V HVdT 3
\V - 8. =
m m
2 2 MO HOLIMSA 2 2 MRS HOLIMSA
?vod || 1yod Ol ®lbod || od
MNIIdN ANITdN 130d| | L¥0d| 1180d Im&%%% MNIdN INITdN 130d! | ¥od| L iyod
/ ° ° ° /) ° °
\ / \ /
j / g ¥vdTNAZ A / f v ¥vd1INAZ
/ / § / / / $
acell 48zl avcll 0G.1 BZcll egell 123 4 AN

U.S. Patent Mar. 29, 2016 Sheet 18 of 34

US 9,300,592 B2

ESTABLISH VIRTUAL SWITCHES OF HOST SYSTEM |~1802

'

SHARE SINGLE PHYSICAL PORT OF
PHYSICAL NETWORK ADAPTER AS PART
OF COMMON PHYSICAL LAG

~1804

(B0
FIG. 18

RECEIVE REQUEST TO TAKE OVER

~1902

PROCESSING OF NETWORK FRAMES

'

THE NETWORK FRAME ADDRESS(ES)

REGISTER NETWORK FRAME ADDRESS(ES) FOR
PROCESSING NETWORK FRAMES DIRECTED TO 1904

'

PROCESS RECEIVED NETWORK FRAMES

~1906

'

DEREGISTER THE REGISTERED

FIG. 19

NETWORK FRAME ADDRESS(ES) [~ 1908

U.S. Patent Mar. 29, 2016

2002
& [Joining z/VM Global VSwitch Member| |

1 Uplink Port network connection activation (CONNECT)
ora SET PORT GROUP x JOIN Command.

IDXExchange
2 IDXExchange —_— 1

Bit 20 = ON Group Exclusive Request

IDXTerminate Cade: x'0019"
-

3 If IDXFailure, terminate network connection
Unable to allocate adapter, terminate task..

4 MPC Handshake
Proceed up ta and including DM_Activate.

5 Issue SETGROUPPARM:Join_Group
1) GROUP NAME: Global Port Group Name
2) HOSTNAME: VSwitch Name
3) HOSTMAC: IVL ManagerUnicast MAC
4) GROUP MAC: Host allocated

SETGROUPPARMS x'20xx'
-

6 Terminate network connection.
Unable to allocate adapter, task completed.

Sheet 19 of 34

2004

| OSA Express Feature |

If the adapter encounters any of the fallowing
conditians then FAIL the IDXExchange:
1) Adapteris in "Exclusive Mode"
2) Adapterin "Group Exclusive Mode
a) If Bit 20 is OFF
b) If Bit 20 is ON and IDXHost ID <> Host ID of
an active SETGROUPPARMS membsr.
3) Adapter NOT "Group Exclusive Mode”
a) Bit 20 is ON and there is one or more active
network connections.

If Bit 20 is ON, set "Group Exclusive" Mode
Note: CSCH/HSCH requiredon a control
reset "Group Exclusive" Mode.

deviceto

Current adapter processing

—————® 33 fa SETGROUPPARMS Group Already Exists

1) Error on following conditions:

a) GROUP NAME <> current group name

b) HOST NAME+HOST MAC = existing

Member HOST NAME+HOST MAC

2) Add new member using the following

a) GROUP NAME

b) HOST NAME
c) HOSTMAC
d) GROUP MAC is ignored

3b Ifa SETGROUPPARMS Group Does NOT Exists

SETGROUPPARMS x'0000"

-

7 Continue with STRTLANforwardto initialize and
activate the network connection.

8 Ifassigned as Active LAG Controller, then
initiate LACP Protacol.

9 Changethe PORT GROUP Status to Active.
10Task completed.

2006

|Other z/VM Global VSwitch Members | |

Group_State_Change
1 Insure IVL Manageris aware of this sharing 4
host and there is IVL connectivity.

2 Task completed.

FIG. 20A

1) Generate a logical group using the following
from SETGROUPPARM:Join_Group:
a) GROUP NAME
b) HOST NAME
¢) HOST MAC
d) GROUP MAC
@) Assign as Active LAG Controller

3cSETGROUPPARMS Reply

a) Return Array of Active Members
* Active Lag Controlleris first entry
b) Return GROUP MAC Address

2008

Generate SETGROUPPARM:Group_State_Changeto

all existing SETGROUPPARMS members with CAUSE

CODE'0001' Group Member Added

5 Task Completed

US 9,300,592 B2

U.S. Patent

Mar. 29, 2016

2010

\

1

| ZZVM Global VSwitch Member

System Administrator issues a
SET PORT GROUP x LEAVE yyyy Command
to removea physical port fromthe LAG.

Therequest is sent viathe IVL to the Port
GroupMangeron the z/VM image which
is the Active LAG Port Controller forthe
port being removed.
Delete_Group
The VSwitch that is the active LAG Controller »
Issues an SETGROUPPARMS:Delete_Group
to the OSA Feature being removedfrom the
LAG.
x'2021' orx2030"

-

If x'2030, then reroute port delete aperation
viathe IVL to the new Active LAG Port
Controllerand terminate this task.

Ifx'2021, then removethe port from the Port
Groupin each Global VSwitch memberand
terminate task.
Unit Check

-

Wait for network connection to be terminated
by the SETGROUPPARMS:Delete_Group.

Issue SSCH SENSE CCW to retrievethe
reason for the Unit Check

Sense CCW

-

If sense date is SETGROUPPARMS Logical
Group Delete, then don'tattempt recaveryfor.
this network connection. The deviceswill be
DETACHed from the centroller.

Remove OSA Express feature from the global
Port Group on this system image,

End of Task. Continue SET PORT GROUP
LEAVE processing.

2012

| Other VM Global VSwitch Members | |

Unit Check

DATA Device: SubChannelActive with an -t

Activate-QDIO-Queues CCW

Issue SSCH SENSE CCW to retrievethe
reasan for the Unit Check

Sense CCW
-

If sense date is SETGROUPPARMS Logical
Group Delete, then don't attempt recoveryfor .
this network connection. Thedeviceswill be
DETACHed from the controller.

Remove OSA Express featurefrom the global
Port Group on this system image,

End of Task. Port can only be added back
into the LAG by 2/VM.

FIG. 20B

Sheet 20 of 34

-

5

6

US 9,300,592 B2

2014
| OSA Express Feature |

Fail the subcommand for any of the following
conditions:
1) If the network connection is NOT a member of an
OSA logical group, then fail the request with a
a return code of x2021"
2) Ifthis network connection is NOT the Active
Graup Controller, then reflect return code ¢'2030".

Tum OFF the LIGHT on the physical port. This will
force the physical switch to stop using the physical
port being removedfromthe LAG.

Terminateall active I/0 on this members DATA device
with a Unit Check (CMD Reject).
Sense = SETGROUPPARMS Logical Group Deleted

Respond to SENSE CCW
Sense = SETGROUPPARMS Logical Group Delete

/(——2016

Terminateall active /O on the read, write and data
devicewith a Unit Check of all active group members.
Sense = SETGROUPPARMS Logical Group Deleted

Respond to SENSE CCW

Sense = SETGROUPPARMS Lagical Group Delete
Delete the logical group and turn off "Group Exclusive"
mode on the adapter.

End of Task

U.S. Patent Mar. 29, 2016 Sheet 21 of 34 US 9,300,592 B2

2018 2020

| z7VM Global VSwitch Member | OSA Express Feature |

1 System Administratorissues a
SET VSWITCH x UPLINK DISCON Command to
removea single VSwitch member's Uplink Port

fromthe LAG.
Remove_Part
2 The VSwitch issues an OSA -
SETGROUPPARMS:Remove_Porto each 1 Fail the subcommand for any of the following
of its active LAG network connections. This reasons:
subcommand will force the adapterto terminate 1) If the network connection is NOTa member of an
the network connection as if a CSCHwas OSA logical group, then fail the request with a
issued. a return code of x'2015
x'2015'
3 Ifx'2015', then quiesce the network connection - Reply to SETGROUPPARMS:Remove_Port
and exit this task and resume VSwitch DISCON
pracessing.
2 Terminateall active /O on this members DATA device

4 Wait forthe adapterto quiesce the VSwitch's Unit Check with a Unit Check.

data device Activate-QDIO-QueuesCCW " Sense = SETGROUPPARMSRemove_Port
5 Issue SSCH SENSE CCW to retrievethe Sense CCW

reason forthe Unit Check -t - 3 Respondto SENSE CCW

Sense = SETGROUPPARMSRemove_Port

6 Ifsense date is SETGROUPPARMSRemove

Port, then don't attempt recoveryfor.

this network connection. The devices will be

DETACHedfrom the controller.
6 Ifthe network connectionis NOT terminated CE and DE

within a reasonabletime, then issue CSCH - » 4 Process any CSCH Instructions received.

Instructions to quiesce the devices.

8 EndofTask. Resumewith DISCON 5 Ifthis network connection is the last active network
connection in the group, then perfarmdelete group
processing and exit this task (SETGROUPPARMS:
Delete Group).

6 Ifthis network connection is the Active Group
Controller, then assign the function ta another
active member within the group.
2022 2024
| Other 2/VM Global VSwitch Members | | [
Group_State Change 1 Send an adapterinitiated SETGROUPPARMS:
1 Ifthis memberis assigned as the Active - Group_State_Change to each active memberin the

Group Controller, then commence LACP logical group with the following information:
operations. 1) Cause Codex'0001 or x'0003'
- .
2) Reflect new active memberarray

2 End of Task. 2 EndofTask

FIG. 20C

U.S. Patent Mar. 29, 2016

2026

Sheet 22 of 34

US 9,300,592 B2

2028

| 2/'VM Clobal VSwitch Member

| OSA Express Feature |

0 Adapter initiated termination

1 Uplink Port network connection terminates
unexpectedly by 2VM (CSCH to data or control
devices). CSCH

— !

2 Task Terminated

[Selected z/VM Global VSwitch Member| | 2

Iflast SETGROUPPARMS Member in the group, then

delete the logical group, remove the adapter from
"Graup Exclusive" mode and turn offthe light.

Perform MAC Take-over
1) Select an active member to take-overthe MACs.

Register Local MAC ADR 2) Send Register LOCAL MAC Address to selected

1 Register new MACs in Hash Table .

Group_State_Change

2 |f Standby to Active LAG Port Controller change - 4
then initiate LACP protocol.

3 Task Terminated

2030
| Original z/VM Global VSwitch Member | |

1 The group member which previously left the group
due to a network connection problem is now
attempting to rejoin the group.
Block VMAC/GMAC 1

2 Block Set VMAC/GMAC to register the MAC —
Addresses for all guests connected to the
VSwitch. x'2005'

member for the MAC Addresses being added
3) Moveall registered MAC Address for the
terminating network connection to the selected
member.

If member exiting the group is the Active LAG Port
Controller, assign the function to another member.

SETGROUPPARM:Group_State_Changeto all active
members informing them of the member leavingthe
group.

1) Cause Code x'0003’

2) Reflect new active member array

2032

If MAC Address is currently registered, then do the
the following:

1alf VMAC/GMAC is NOT a take-over MAC then fail the

command with duplicate MAC respanse code x'2005'

1bIF VMAC/GMAC is a take-overMAC then

3 Task Terminated

2034
[Selected z/VM Global VSwitch Member | |

Unregister Local MAC ADR

1 RemovelVL MAC from Hash Table - 4

2 Task Terminated 5

FIG. 20D

1) Change (Move)connection ID to this network
connection.

If MAC Address wasn't registered, then register it
now.

Reply with results of all MAC Addresses registered.

/,—2036

Initiate an Unregister LOCAL MAC Address for
all MAC Addresses taken back,

Task Terminated

U.S. Patent Mar. 29, 2016 Sheet 23 of 34 US 9,300,592 B2

COMPUTER
PROGRAM
PRODUCT

2100

2104

PROGRAM
CODE LOGIC

COMPUTER
READABLE
STORAGE

MEDIUM
2102

~—

FIG. 21

U.S. Patent Mar. 29, 2016 Sheet 24 of 34 US 9,300,592 B2

HOST COMPUTER 2200

2201
| [

PROCESSOR (CPU)

2212 ART 2913
|

2203 DAT ADDRESS
TLB

2207 —

LOAD/STORE

UNIT
2205 —)

—2204 VI 2209 Y

INSTRUCTION Al
FETCH UNIT

e R

mIO>»0O

INSTRUCTION

DECODE UNIT [~ 2206

—2208 C 2202

INSTRUCTION
EXECUTION [*®

— UNIT

MEDIA
221

FIG. 22

U.S. Patent Mar. 29, 2016 Sheet 25 of 34 US 9,300,592 B2

2320 OPERATING SYSTEM
APPLICATION 1—}__ 5335
APPLICATION 2
APPLICATION 3
2322+ i (2331
%/ // I/
/ o
/ p BASE COMPUTER ,* /
e / L~
/ 2321
DISPLAY | 9327
STORAGE |
PROCESSOR s
(
)
2326
MOUSE 2328
= 2330
2324 |
PRINTER/SCANNER

FIG. 23

U.S. Patent Mar. 29, 2016 Sheet 26 of 34 US 9,300,592 B2

2440
- REMOTE SERVER

=
W = -—~2448

2446
= [2451
2445— |

2444

2443—1ﬁ_=

O] =
CLE;E"N"T , =
CLIENT 4
2442

CLIENT 2

CLIENT 1

FIG. 24

U.S. Patent Mar. 29, 2016 Sheet 27 of 34 US 9,300,592 B2
2525—"~ MEMORY
(2553
PROCESSOR CACHES
2555
PROGRAM COUNTER X
2561J
INSTRUCTION FETCH
DECODE/DISPATCH | o | LOAD/STORE UNIT
BRANCH (2562
EXECUTION UNIT e
UNIT
2563
REGISTERS |~2559 | ArRT L/

2554—" IfOUNITS

FIG. 25

U.S. Patent Mar. 29, 2016 Sheet 28 of 34 US 9,300,592 B2

2657
EXECUTION UNIT

| 2671
// / \ AN
OII}IER
2665 2656
DECODE/DISPATCH
2659~ REGISTERS
[— 2660
LOAD/STORE UNIT

FIG. 26A

U.S. Patent Mar. 29, 2016 Sheet 29 of 34 US 9,300,592 B2

2658
BRANCH UNIT

BHT

| |~ 2681

2656
f—

DECODE/DISPATCH

2659 REGISTERS

FIG. 26B

U.S. Patent Mar. 29, 2016 Sheet 30 of 34 US 9,300,592 B2

2660
LOAD/STORE UNIT

CTL

2688

| -~ 2684
\ N\

2656
F_

DECODE/DISPATCH

2659 REGISTERS

CACHEMEMORY | —~_
INTERFACE 2653

FIG. 26C

U.S. Patent Mar. 29, 2016 Sheet 31 of 34 US 9,300,592 B2

2792
EMULATED (VIRTUAL)
HOST COMPUTER
MEMORY 2794
2700' 2796
COMPUTER
MEMORY
(HOST)
2}91
A B
| EMULATED (VIRTUAL) l
| PROCESSOR (CPU) |
I 2797 I
| |
| |
27
! o3 EMULATION I
| ROUTINES !
: PROCESSOR |
| NATIVE |
| | INSTRUCTION SET [<&— l
| ACHITECTURE B' |
| |
| |
| |
| |
| |
| |
| |
| |
| |
.]
/ N

MEDIA
2711

FIG. 27

US 9,300,592 B2

Sheet 32 of 34

Mar. 29, 2016

U.S. Patent

oL8¢

8¢ 9Old

(s)3aoinaa

TYNYILXT

\
182

HILdvVaVv YHOMLAN Amvmo<o"__mm;z_ AVdSIa
/
028¢ N S
2282 vZ8e
N
P - 8lee
_ _ wam -
~-0v8Z 1IN
IHOYO ONISSID0Nd
W3LSAS \
J9VHOLS 9182
NV
€82)\
AHOWIN 0£82
/
:4:14 HIAYIS WILSAS ¥ILNWNOD [-2182

U.S. Patent

J

2954N

2954C

Mar. 29, 2016

2950

Sheet 33 of 34

2910

29548

US 9,300,592 B2

|
— AR

FIG. 29

2954A

US 9,300,592 B2

Sheet 34 of 34

Mar. 29, 2016

U.S. Patent

B =5

0€ 'Old 0008
/
SIEMOS 2JEMJOS PUE SJEMPIEH
Jonog | mm&wwwm_ g Swesfs sionos
alemyjos uopeolddy @ ®wo_‘_mmx ainjos)yly
oseqeleq dHompN BupjomieN ebeloig @hal OSi seueyuely
Je a8 mel/ -
/
SIRID suogeoiddy SUOMEN ebeiog sionpg OFCAEMA
[EnuIA [enuIA [enuiA [ENUIA [enuIA

Wewebeuely

sy pue Juswasbeue

w
Buuueld v1s

[oA9T S0IIAS

Buioud pue Buiuoisinolg
Buuslep 801n0saYy
990¢

/

SPEOPLOM

Buisseacid
uopoesuel |

Buissanold
SopAleuy ejeq

KisAlleq
uoneonp3

Jualuabeuep
apfhogyn
pue

uonebiaeN
pue Buiddepy

US 9,300,592 B2

1
PHYSICAL PORT SHARING IN A LINK
AGGREGATION GROUP

BACKGROUND

Link aggregation provides an industry standard means of
aggregating multiple switch ports along with their directly
connected network interface cards (NICs) to form a Link
Aggregation Group (LAG), such that networking interfaces
connected through these NICs can treat the LAG as if it were
a single port. This configuration provides a High Available
network connection with increased bandwidth. Example
Link Aggregation Control Protocols (LACPs) for Ethernet
are defined in the 802.3ad and 802.1ax standards promul-
gated by the Institute of Electrical and Electronics Engineers
(IEEE).

Current IEEE LAG architecture does not permit a NIC port
to be configured in multiple LAGs or shared outside of a LAG
at the same time. This is due to the direct peer-to-peer control
interlock requirement of LACP to maintain a port within a
LAG. The requirement dictates that all NICs withina LAG be
configured to a single switch (virtual switch or physical
switch). In other words, there is no sharing of a NIC config-
ured in a LAG with multiple switches.

SUMMARY

Current LAG protocol restrictions described above are
costly and difficult to manage in large information technology
shops where workloads are manually balanced across mul-
tiple virtual switches within, and across, logical partitions
(LPARs) within a Central Execution Complex (CEC). In
addition, workload balancing across many virtual switch
LAGs within, and across, multiple LPARs is problematic due
to the manual nature of the effort. In cases where 10 Gb NICs,
as an example, are deployed in a LAG, the conventional
practice quickly becomes cost prohibitive. In accordance
with aspects described herein, a LAG encompassing multiple
virtual switches each have a virtual switch port configured to
share a single physical NIC port is provided. Further provided
are facilities for taking-over network frame handling when,
for instance, a network connection of a participant virtual
switch within the LAG fails.

Shortcomings of the prior art are overcome and additional
advantages are provided through the provision of a computer
program product which includes a computer readable storage
medium readable by a processing circuit and storing instruc-
tions for execution by the processing circuit for performing a
method that includes establishing a plurality of virtual
switches in a host system of a computing environment, each
virtual switch of the plurality of virtual switches including a
respective virtual switch port grouped within a shared port
group of virtual switch ports, wherein the virtual switch ports
of the shared port group are in communication with a com-
mon physical network adapter of the host system; and shar-
ing, by the virtual switch ports of the shared port group, a
single physical port of the physical network adapter as part of
a common physical link aggregation group (LAG).

Further, a system is provided. The system includes a
memory and a processor in communications with the
memory. The computer system is configured to perform a
method, the method including establishing a plurality of vir-
tual switches in a host system of a computing environment,
each virtual switch of the plurality of virtual switches includ-
ing a respective virtual switch port grouped within a shared
port group of virtual switch ports, wherein the virtual switch
ports of the shared port group are in communication with a

10

15

20

25

30

35

40

45

50

55

60

65

2

common physical network adapter of the host system; and
sharing, by the virtual switch ports of the shared port group, a
single physical port of the physical network adapter as part of
a common physical link aggregation group (LAG).

Yet further, a method is provided, which includes estab-
lishing a plurality of virtual switches in a host system of a
computing environment, each virtual switch of the plurality
of virtual switches including a respective virtual switch port
grouped within a shared port group of virtual switch ports,
wherein the virtual switch ports of the shared port group are in
communication with a common physical network adapter of
the host system; and sharing, by the virtual switch ports of the
shared port group, a single physical port of the physical
network adapter as part of a common physical link aggrega-
tion group (LAG).

Additional features and advantages are realized through
the concepts of aspects of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed inven-
tion.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particu-
larly pointed out and distinctly claimed as examples in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention
are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:

FIG. 1 depicts one example of a computing environment to
incorporate and use one or more aspects described herein;

FIG. 2 depicts another example of a computing environ-
ment to incorporate and use one or more aspects described
herein;

FIG. 3 A depicts yet another example of a computing envi-
ronment to incorporate and use one or more aspects described
herein;

FIG. 3B depicts further details of the memory of FIG. 3A;

FIG. 4 illustrates an example physical link aggregation
group configuration;

FIG. 5 illustrates an example link aggregation group con-
figuration in accordance with aspects described herein;

FIG. 6 illustrates communication among hypervisors of a
computing environment to facilitate sharing of network
adapter ports, in accordance with aspects described herein;

FIG. 7 depicts an example configuration in which a single
physical link aggregation group is shared by multiple virtual
LAGs, in accordance with aspects described herein;

FIG. 8 depicts example link aggregation group port con-
troller assignments in an example link aggregation group
configuration according to aspects described herein;

FIG. 9 depicts an example process for activating a virtual
switch uplink port, in accordance with aspects described
herein;

FIG. 10 depicts an example process for handling a link
aggregation group port controller state change, in accordance
with aspects described herein;

FIG. 11 depicts an example process for link aggregation
group slow protocol Ethernet frame handling, in accordance
with aspects described herein;

FIG. 12 depicts an example process for link aggregation
group slow protocol Marker handling, in accordance with
aspects described herein;

FIG. 13 depicts an example process for a virtual switch
uplink disconnect, in accordance with aspects described
herein;

US 9,300,592 B2

3

FIG. 14 depicts an example process for handling a request
to take over processing of network frames, in accordance with
aspects described herein;

FIG. 15 depicts an example process for handling a received
network frame, in accordance with aspects described herein;

FIG. 16 depicts an example process for handling a request
to unregister processing of network frames, in accordance
with aspects described herein;

FIG. 17 depicts an example link aggregation group port
controller take-over sequence, in accordance with aspects
described herein;

FIG. 18 depicts an example process for configuring and
using a link aggregation group in a computing environment,
in accordance with aspects described herein;

FIG. 19 depicts an example process for handling network
frames in a computing environment, in accordance with
aspects described herein;

FIG. 20A-20D provide further details of Multi-VSwitch
LAG configuration functions, in accordance with aspects
described herein;

FIG. 21 depicts one embodiment of a computer program
product;

FIG. 22 depicts one embodiment of a host computer sys-
tem;

FIG. 23 depicts a further example of a computer system;

FIG. 24 depicts another example of a computer system
comprising a computer network;

FIG. 25 depicts one embodiment of various elements of a
computer system,

FIG. 26A depicts one embodiment of the execution unit of
the computer system of FIG. 25;

FIG. 26B depicts one embodiment of the branch unit of the
computer system of FIG. 25;

FIG. 26C depicts one embodiment of the load/store unit of
the computer system of FIG. 25;

FIG. 27 depicts one embodiment of an emulated host com-
puter system;,

FIG. 28 depicts one embodiment of a cloud computing
node;

FIG. 29 depicts on embodiment of a cloud computing
environment; and

FIG. 30 depicts one example of abstraction model layers.

DETAILED DESCRIPTION

In accordance with aspects described herein, capabilities
are provided to create and use a link aggregation group
encompassing multiple virtual switches each having a virtual
switch port configured to share a single physical NIC port.
Further capabilities are provided for taking-over network
frame handling when, for instance, a network connectionof'a
participant virtual switch within the link aggregation group
fails.

Computing environments of different architectures may
incorporate and use one or more aspects provided herein. For
instance, environments based on the PowerPC architecture,
also referred to as Power ISA, offered by International Busi-
ness Machines Corporation (IBM®) and described in the
Power ISA™ Version 2.06 Revision B specification, Jul. 23,
2010, hereby incorporated by reference herein in its entirety,
may include one or more aspects, as well as computing envi-
ronments of other architectures, such as the z/Architecture,
offered by International Business Machines Corporation, and
described in 7/ Architecture—Principles of Operation, Publi-
cation No. SA22-7932-09, 10th Edition, September 2012,
which is hereby incorporated by reference herein in its
entirety.

20

25

35

40

45

4

Z/ARCHITECTURE, IBM, Z/OS and Z/VM (referenced
herein) are registered trademarks of International Business
Machines Corporation, Armonk, N.Y. Other names used
herein may be registered trademarks, trademarks or product
names of International Business Machines Corporation or
other companies.

One example of a computing environment to incorporate
and use one or more aspects described herein is provided with
reference to FIG. 1. In one example, a computing environ-
ment 100 includes a processor (central processing unit—
CPU) 102. Processor 102 is communicatively coupled to a
memory portion 108 having, for instance, a cache (not pic-
tured), and to an input/output (1/O) portion 112. 1/O portion
112 is communicatively coupled to external /O devices 114
that may include, for example, data input devices, sensors
and/or output devices, such as displays.

A further embodiment of a computing environment to
incorporate and use one or more aspects described herein is
depicted in FIG. 2. Referring to FIG. 2, in one example, a
computing environment 200 includes a central processor
complex (CPC) 202 (also referred to as a Central Execution
Complex or Central Electronics Complex—“CEC)” coupled
to one or more input/output (I/O) devices 204 through I/O
subsystem 212. Central processor complex 202 includes pro-
cessor memory 208 (a.k.a., main memory, main storage, cen-
tral storage) coupled to one or more central processors (a.k.a.,
central processing units (CPUs)) 210 and I/O subsystem 212,
each of which is further described below.

Processor memory 208 includes one or more virtual
machines 214 (for one example of the PowerPC architecture)
or one or more logical partitions 214 (for one example of the
7/Architecture), and processor firmware 216, which includes
a hypervisor 218 and other processor firmware 220. As used
herein, firmware includes, e.g., the microcode and/or milli-
code of the processor. It includes, for instance, the hardware-
level instructions and/or data structures used in implementa-
tion of higher level machine code. In one embodiment, it
includes, for instance, proprietary code that is typically deliv-
ered as microcode that includes trusted software or micro-
code specific to the underlying hardware and controls oper-
ating system access to the system hardware.

Each virtual machine or logical partition 214 functions as a
separate system and has one or more applications 222, and
optionally, a resident operating system 224 therein, which
may differ for each virtual machine or logical partition. In one
embodiment, the operating system is the z’VM operating
system, the z/OS operating system, the z/Linux operating
system, or the TPF operating system, offered by International
Business Machines Corporation, Armonk, N.Y. The virtual
machines are managed by hypervisor 218, such as PowerVM,
offered by International Business Machines Corporation,
Armonk, N.Y.; and the logical partitions are managed by
hypervisor 218, such as the Processor Resource/System Man-
ager (PR/SM), offered by International Business Machines
Corporation, Armonk, N.Y.

The virtual machines are hosted on a host system, i.e. CEC
202, and therefore could be considered guests of that host
system. As noted above, each virtual machine may load a
guest operating system. In some embodiments, a virtual
machine may load ahypervisor or guest operating system that
itself hosts one or more guests (one or more other guest
operating systems, for instance). In this manner, a “guest”
may refer generally to a virtual machine or guest operating
system that is running on (“hosted by”) a host system. Mul-
tiple levels of guests may exist, all supported by a lowest level
host system (such as CEC 202). Additionally, in some cases,
an operating system may itself be, or implement, a virtual

US 9,300,592 B2

5

machine. Therefore, in some scenarios, a virtual machine
may be considered a guest operating system, and vice versa.
In any case, the term “guest” as used herein is used broadly to
encompass any of the above possibilities.

Central processors 210 are physical processor resources
assignable to the virtual machines or allocated to the logical
partitions. For instance, each virtual machine or logical par-
tition 214 includes one or more logical processors, each of
which represents all or a share of a physical processor 210 that
may be dynamically allocated to the virtual machine or par-
tition. A central processor may include various components
not depicted herein, such as a memory management unit,
translation lookaside buffer, registers, and caches.

Input/output subsystem 212 directs the flow of information
between input/output devices 204 and main memory 208 (in
some cases via one or more 1/O control units, not pictured).
1/0 subsystem 212 is coupled to the central processing com-
plex in that it can be a part of the central processing complex
or separate therefrom. The I/O subsystem relieves the central
processors of the task of communicating directly with the
input/output devices and permits data processing to proceed
concurrently with input/output processing. To provide com-
munications, the /O subsystem employs /O communica-
tions adapters. There are various types of communications
adapters including, for instance, channels, I/O adapters, host
bus adapters, PCI cards, Ethernet cards, Small Computer
Storage Interface (SCSI) cards, etc. Further, the /O sub-
system uses one or more input/output paths as communica-
tion links in managing the flow of information to or from
input/output devices 204. In some examples, input/output
devices 204 include network components, such as physical
partner switches.

Another embodiment of a computing environment to
incorporate and use one or more aspects described herein is
provided with reference to FIG. 3A. In this example, a com-
puting environment 300 includes, for instance, a native cen-
tral processing unit (CPU) 302, a memory 304, and one or
more input/output devices and/or interfaces 306 coupled to
one another via, for example, one or more buses 308 and/or
other connections. As examples, computing environment 300
may include a PowerPC processor, or a pSeries server offered
by International Business Machines Corporation, Armonk,
N.Y.; an HP Superdome with Intel Itanium II processors
offered by Hewlett Packard Co., Palo Alto, Calif.; and/or
other machines based on architectures offered by Interna-
tional Business Machines Corporation, Hewlett Packard,
Intel, Oracle, or others.

Native central processing unit 302 includes one or more
native registers 310, such as one or more general purpose
registers and/or one or more special purpose registers used
during processing within the environment. These registers
include information that represents the state of the environ-
ment at any particular point in time.

Moreover, native central processing unit 302 executes
instructions and code that are stored in memory 304. In one
particular example, the central processing unit executes emu-
lator code 312 stored in memory 304. This code enables the
computing environment configured in one architecture to
emulate another architecture. For instance, emulator code
312 allows machines based on architectures other than the
7/Architecture, such as PowerPC processors, pSeries servers,
HP Superdome servers or others, to emulate the z/Architec-
ture and to execute software and instructions developed based
on the z/Architecture.

Further details relating to emulator code 312 are described
with reference to FIG. 3B. Guest instructions 350 stored in
memory 304 comprise software instructions (e.g., correlating

25

35

40

45

6

to machine instructions) that were developed to be executed
in an architecture other than that of native CPU 302. For
example, guest instructions 350 may have been designed to
execute on a z/Architecture processor 102, but instead, are
being emulated on native CPU 302, which may be, for
example, an Intel Itanium II processor. In one example, emu-
lator code 312 includes an instruction fetching routine 352 to
obtain one or more guest instructions 350 from memory 304,
and to optionally provide local buffering for the instructions
obtained. It also includes an instruction translation routine
354 to determine the type of guest instruction that has been
obtained and to translate the guest instruction into one or
more corresponding native instructions 356. This translation
includes, for instance, identifying the function to be per-
formed by the guest instruction and choosing the native
instruction(s) to perform that function.

Further, emulator code 312 includes an emulation control
routine 360 to cause the native instructions to be executed.
Emulation control routine 360 may cause native CPU 302 to
execute a routine of native instructions that emulate one or
more previously obtained guest instructions and, at the con-
clusion of such execution, return control to the instruction
fetch routine to emulate the obtaining of the next guest
instruction or a group of guest instructions. Execution of the
native instructions 356 may include loading data into a reg-
ister from memory 304; storing data back to memory from a
register; or performing some type of arithmetic or logic
operation, as determined by the translation routine.

Each routine is, for instance, implemented in software,
which is stored in memory and executed by native central
processing unit 302. In other examples, one or more of the
routines or operations are implemented in firmware, hard-
ware, software or some combination thereof. The registers of
the emulated processor may be emulated using registers 310
of the native CPU or by using locations in memory 304. In
embodiments, guest instructions 350, native instructions 356
and emulator code 312 may reside in the same memory or
may be disbursed among different memory devices.

The computing environments described above are only
examples of computing environments that can be used. Other
environments, including but not limited to, other non-parti-
tioned environments, other partitioned environments, and/or
other emulated environments, may be used; embodiments are
not limited to any one environment.

FIG. 4 illustrates an example physical link aggregation
group (LAG) configuration, for instance a standard IEEE
802.3ad (or IEEE 802.1ax) aggregation of Multiple Link
Segments. In the example of FIG. 4, multiple LAG port
groups are created because physical port sharing is not sup-
ported in this example.

Depicted in FIG. 4 is a logical partition (LPAR) 424 (such
as an LPAR of a CEC as described above with reference to
FIG.2). LPAR 424 hosts multiple servers 4264, each of which
is assigned to, and communicates with, virtual switch 428a,
and more specifically a respective virtual port 430 thereof.
Similarly, LPAR 424 hosts multiple servers 4265, ecach of
which is assigned to, and communicates with, virtual switch
428b, and more specifically a respective virtual port 430
thereof. In other embodiments, servers 426a and virtual
switch 4284 may be hosted on a different LPAR than one
hosting servers 4265 and virtual switch 42854.

Virtual switch 4284 includes two (in this example) uplink
ports 432a, each of which utilizes a respective physical
adapter (NIC 434a) to communicate with a physical partner
switch 436 (or multiple physical partner switches of the
LAG). Similarly, virtual switch 42856 includes two (in this
example) uplink ports 4325, each of which utilizes a respec-

US 9,300,592 B2

7

tive physical adapter (NIC 4345) to communicate with physi-
cal partner switch 436 (or multiple physical partner switches
of the LAG).

In the example of FIG. 4, there are two physical LAGs:
LAG A and LAG B. Physical NICs 434aq are part of physical
LAG A, while physical NICs 43454 are part of physical LAG
B. Consequently, virtual ports 432a each use a physical port
of'a respective NIC 434a as part of LAG A, and virtual ports
432b each use a physical port of a respective NIC 4345 as part
of LAG B.

Each physical LAG (LAG A and LAG B) has a discrete set
of NICs to service its specific LAG. LAG A’s discrete set
consists of NICS 4344 and while LAG B’s discrete set con-
sists of NICs 4345. Each NIC is in use (dedicated) to a single
virtual switch (i.e. 428a or 4285b). Sharing of a NIC is not
permitted across multiple virtual switches or operating sys-
tems (a virtual switch may be part of an operating system). As
shown in FIG. 4, each virtual switch (4284 and 4285) estab-
lishes and maintains active LACP communications over a
separate LAG consisting of discrete NICs connected with
their perspective partner switch. In this scenario, the addition
of another virtual switch would require both the consumption
of additional NICs and another LAG to be defined in order to
provide such connectivity of the other virtual switch to the
physical partner switch.

In FIG. 4, each virtual switch must deploy its own LACP
Marker Protocol to move traffic from one NIC to the other
during load balancing operations. A system administrator
balances external network load by deploying servers on the
appropriate virtual switches. Manual workload balancing
between distinct LAGs is disadvantageously imprecise and
reactive rather than proactive.

With current LAG implementations, a customer is required
to configure and maintain multiple distinct LAGs on both
physical and virtual switches, as shown in FI1G. 4. With mul-
tiple physical LAGs, the customer is compelled to build high
availability uplink port redundancy within each virtual
switch. As a result, this configuration requires a minimum of
four NICs to be installed for exclusive LAG use. This may not
be a significant problem if each virtual switch can drive all of
its NICs consistently close to one hundred percent bandwidth.
However, it is a waste of network capability if NIC bandwidth
is not consistently being driven to one hundred percent. Typi-
cally, a customer’s network is not set up to run consistently at
a hundred percent capacity. Therefore, it is more practical to
add or remove network capacity on demand, while providing
high availability at all times. Current solutions using the
configuration of FIG. 4 result in both management and finan-
cial burdens for the customer.

A physical switch port connected to a NIC (i.e. a switch
port of physical partner switch 436 connected to a NIC 434a
or 434b) has an additional sharing limitation in these configu-
rations. A physical switch port can be configured to act either
as a member of a single LAG or as an independent port. It
cannot do both concurrently. As a result, a physical switch
port configured in a LAG cannot be shared unless all the
network connections established are within the same physical
LAG. Current IEEE LAG architecture does not allow a portto
be in multiple (virtual) LAGs.

A result of the limitations above is that a system adminis-
trator typically must define and maintain multiple physical
LAG configurations—essentially one for each virtual switch
defined in the CEC, as above in FIG. 4. The maintenance of
this type of configuration is complex, especially in large-scale
operations where servers are added and moved based on
workload requirements.

10

15

20

25

30

35

40

45

50

55

60

65

8

Aspects described herein present a new virtual LAG para-
digm, in which two or more virtual switches are made to
appear to a physical partner switch as a single switch. Capa-
bility is enabled for multiple virtual switches to be connected
to a single physical LAG, and may be achieved, at least in
part, via virtualization technology that provides the ability to
share a port in a single physical LAG with multiple virtual
switches. The sharing ofa LAG provided according to aspects
described herein may be transparent to the physical partner
switch(es) making up the physical LAG. Transparency may
be a distinguishing underpinning of this design, since shared
NICs and LACP cannot detect the presence of multiple aggre-
gation-aware devices on the same link. LACP bonding
between participating switches may be a point-to-point con-
nection using a predefined multicast media access control
(MAC) address for controlling LACP Protocol between each
port. Aspects described herein present, for instance, a single
point-to-point control plan between the partner physical
switch(es) and the multiple logical virtual switches within the
same LLAG, while remaining compatible with the IEEE LAG
specification.

Accordingly, FIG. 5 illustrates an example link aggrega-
tion group configuration in accordance with aspects
described herein. FIG. 5, as in FIG. 4, includes an LPAR 524
hosting multiple servers 526a assigned to virtual ports 530 of
virtual switch 5284, and hosting multiple servers 5265
assigned to virtual ports 530 of virtual switch 52856. Uplink
ports 532a each utilize a different respective physical adapter
(NIC 534) to communicate with physical partner switch 536
(or multiple physical partner switches of the LAG). In FIG. 5,
in contrast to FIG. 4, uplink ports 5325 (of virtual switch
528b) also each utilize the NICs 534 to communicate with
physical partner switch 536. Thus, virtual switch 528a and
virtual switch 5285 each include an uplink port that shares a
single physical NIC, and shares a physical port of that NIC in
communicating to physical partner switch 536. In the
example of FIG. 5, there is only a single physical LAG, LAG
A.

Thus provided is a virtual LAG paradigm, where two or
more virtual switches (528a, 528b) are made to appear to a
physical switch (536) as a single switch with a single link
aggregation control plane (LACP). As depicted by FIG. 5,
each virtual switch (5284, 5285) is actively sharing a set of
NICs (534) that are configured in LAG A. This type of con-
figuration (termed herein a ‘Multi-VSwitch LAG configura-
tion’) is novel in the networking field.

Provided as part of Multi-VSwitch LAG is an additional
virtualization layer to provide support beyond existing LAG
port spanning across multiple physical switches, as has been
conventionally provided by existing vendors. Example such
conventional LAG port spanning across physical partner
switches may be known as virtual chassis, virtual port chan-
nel, virtual switching system, virtual link agg group, and
multi-chassis link agg, among others. With these technolo-
gies, a single physical LAG is made up of multiple physical
switches with each port of a given physical switch being tied
directly to a corresponding port on a partner switch. These
technologies merely span a LAG across multiple physical
switches; there is no NIC port sharing. Only a single network
connection exists between each physical port within the LAG.
If an entire physical switch fails, in this configuration, a
subset of the original LAG remains viable for data transfer,
although the available bandwidth will decrease until the fail-
ing switch is repaired.

With Multi-VSwitch LAG as described herein, the physi-
cal NIC ports connected within the LAG can still be config-
ured to multiple virtual switches exploiting the aforemen-

US 9,300,592 B2

9

tioned LAG technology today. An added virtual LAG layer
(also termed “LAG virtualization layer” herein) enables each
physical port within the LAG to be shared by multiple virtual
switches concurrently. A Multi-VSwitch LAG configuration
permits each sharing virtual switch in the same or in separate
LPARs within a CEC to establish, as an example, its own
IEEE 802.3ad LAG connection to the same physical partner
switch. From the perspective of the physical switch, it is
unknown that there are multiple virtual switches (and there-
fore multiple virtual LAGs, see below) connected. The added
virtual LAG layer may manage a single link aggregation
control plane (LACP) with the partner physical switch, to
enable an entire CEC’s network traffic, or a portion thereof, to
be managed within a single LAG. The added LAG virtualiza-
tion layer may reside at least partially within both the virtual
switches and the NIC adapter to complement and support the
existing LAG specification (e.g. IEEE 802.3ad).

Multi-VSwitch LAG provides an ability to create a single
LACP LAG as defined by IEEE 802.3ad (as an example) with
one or more physical switches. All ports within the single
LAG may be managed using [LACP protocol by one or more
of'the virtual switches sharing the same physical NIC port. A
specific physical port within the LAG may be managed by
only one sharing virtual switch at any point in time. All of the
physical ports within the LAG may be managed by a single
virtual switch or distributed across multiple sharing virtual
switches.

A discussion of a Multi-VSwitch LAG environment is now
provided. Multi-VSwitch LAG is a collaboration within a
single hypervisor or multiple hypervisors, the collaboration
being to share physical NIC adapters to enable sharing for the
multiple virtual switches to participate in the Multi-VSwitch
LAG. A hypervisor may be at least partially responsible for
configuration, synchronization, and control of the LAG in
conjunction with its peer hypervisors via communication
across a communication link. This is depicted and described
with reference to FIG. 6, which illustrates communication
among hypervisors of a computing environment to facilitate
sharing of network adapter ports (NIC adapter ports in this
example), in accordance with aspects described herein.

The example of FIG. 6 depicts multiple LPARs 624 (of a
single CEC, for instance) sharing NICs 634 as part of single
physical LAG 646. Each LPAR executes a respective hyper-
visor 638. The hypervisors 638 may be in communication via
one or more communications paths 639. A user can define a
respective virtual switch 628 for each hypervisor 638. The
virtual switch and hypervisor are associated with each other,
for instance the hypervisor controls the virtual switch. Some
or all of these virtual switches may share the same LAG,
logically tied together as a global virtual switch (or ‘Global
VSwitch’ herein). A global virtual switch includes therefore a
number of independent member virtual switches that can
each be associated with a respective different hypervisor, that
can be distributed in multiple LPARs, and that may be bound
together logically as the single global virtual switch. Effec-
tively, a global switch that spans multiple hypervisors is
thereby created. The hypervisors can manage each indepen-
dent virtual switch as a global virtual switch. Through com-
munication path(s) 639, changes made in one hypervisor can
be propagated to all instances of the global virtual switch (e.g.
to the other hypervisors), thereby harmonizing multiple inde-
pendent and distributed virtual switches into a single global
virtual switch.

A virtual switch defined as a member of a global virtual
switch may be provided the capability to configure a LAG,
not just for its associated hypervisor image but also for all of
the hypervisors that will share the LAG. This may be accom-

25

30

35

40

45

50

55

60

65

10

plished by defining a shared port group 640 of virtual switch
ports. Initially, a shared port group 640 is defined on a con-
nected hypervisor image. Once a shared port group 640 is
defined, it is the hypervisor’s responsibility to propagate the
shared port group to all connected hypervisors, at which point
the shared port group 640 can be associated with any virtual
switch that is a member of a global virtual switch. Changes
made in one hypervisor may be synchronized 641 to all
instances of the shared port group 640 (i.e. each shared port
group 640).

Multi-VSwitch LAG incorporates, for each LPAR, a LAG
virtualization layer 642 between the management and con-
figuration function of a virtual switch 628 and its lower level
LAG uplink port drivers 644. In this regard, the management
functions may include the LACP and MARKER Protocols to
be performed by the virtual switch image, and the configura-
tion function may be part of the virtual switch and shared port
group components shown in FIG. 6. Conventionally, a LAG
uplink port driver is responsible for the LACP protocol
required to sustain a viable LAG, while taking input from the
virtual switch’s management and control functions. In accor-
dance with aspects described herein, the LAG virtualization
layer 642 instead is to direct the low level LACP and Marker
protocol in concert with the partner switch(es) of the LAG.
This moves LAG control from a single virtual switch and its
corresponding partner switch(es) to the LAG virtualization
layer and its partner switch(es). A function of the LAG virtu-
alization layer 642 is to provide the ability for multiple virtual
switches to share the same shared port group 640, transparent
to the partner switch, i.e. such that the partner switch behaves
as if there is only a single virtual switch and hypervisor
behind the NICs.

To facilitate this transparency, the LAG virtualization layer
obtains information from all virtual switches sharing the
same LLAG (i.e. all virtual switches having at least one virtual
switch port that is a member of the shared port group). There
are two sources from which to collect this information. The
first source is the shared port group maintained by the hyper-
visors associated with the virtual switches of the LAG, and
the second source is each shared NIC of the LAG. With
respect to the shared NICs, a Port Group Membership Control
function is provided to facilitate collection of information
therefrom. A hypervisor configures the shared NIC ports and
attributes of the group, while the NIC provides low-level
status of each virtual switch network connection sharing the
NIC. Both sources of information may be used in the admin-
istration of the LACP and Marker protocol with the partner
switch.

Various functional areas of the LAG virtualization layer are
now described in further detail and categorized into the fol-
lowing sections:

Port Group Membership Control

Active and Standby LAG Port Controller roles

IEEE802.3ad Marker PDU Processing

Removing an Operational Port from a Multi-VSwitch LAG

Ability to Remove and Add Virtual Switches in a Multi-
VSwitch LAG

MAC Address Take-Over and Take-Back

Inter VSwitch Link (IVL) Data Plane Operations

Port Group Membership Control:

FIG. 7 depicts an example configuration in which a single
physical LAG is shared by multiple virtual LAGs, in accor-
dance with aspects described herein. As shown in FIG. 7,
Multi-VSwitch LAG extends the current IEEE LLAG support
by providing the ability to share the single physical LAG 746
with multiple virtual switches 728. Sharing among the LAG
shared port group is conducted while maintaining IEEE

US 9,300,592 B2

11

802.3ad design integrity of a single point-to-point communi-
cation control plane between the sharing virtual switches 728
and partner switch(es) 736. Each virtual switch 728 includes
a pair (in this example) of uplink ports 732. Each uplink port
of a virtual switch 728 is in communication with a different
physical NIC 734 having a NIC port that is part of the physical
LAG 746. In this manner, two groups, i.e. virtual LAGs 748
(each corresponding to a physical NIC 734), are established.
For each virtual LAG 748, each virtual switch 728 has a
respective uplink port that is part of the virtual LAG. Each
virtual switch 728 is connected to the same physical LAG 746
through shared NICs 734 operating in a Port Group Member-
ship Control mode. This new NIC operational mode allows
multiple independent LAG capable network connections to
be established on the same NIC in a LAG configuration. This
provides the ability for a single LAG (746) to be shared
across, for instance, multiple zVM images running within
the same CEC. All external network connectivity for the CEC
may be provided by the single physical LAG, thus enabling
additional capacity to be added or taken away as needed from
a single point.

Port Group Membership Control is a function to insure
interoperability between virtual switches sharing the same
LAG. Part of this new function is the ability for an operating
system (as an example) to create a logical group within a
physical NIC port. The logical group will keep track of the
multiple network connections sharing the same LAG port,
whether the network connections are made from the same
operating system or LPAR, or from operating systems in
multiple LPARs. Only network connections that join the
same logical group may be enabled to share the LAG port.
Port Group Membership Control can insure the following:

Only a network connection that creates a new, or joins an

existing, logical group is allowed to be established on the
physical NIC;

All sharing network connections (virtual switches) are

compatible in type and function;

Full awareness of all active network connections within the

same logical group;

Selection of one of the active network connections as the

active LAG Port Controller for the group;

Notification to all group members of any membership

changes related to the group; and

Selection of another member to take over Ethernet connec-

tivity and/or the active LAG Port Controller function
whenever a member leaves the group.

ANIC enters Port Group Membership Control mode based
on, for instance, a virtual switch that intends to deploy a LAG
creating a logical group on the physical NIC when establish-
ing the virtual switch’s network connection, prior to joining a
LAG. In some examples, only an idle NIC (devoid of active
network connections) is able to transition from its standard
operational mode to Port Group Membership Control mode.
After a NIC transitions into Port Group Membership Control
mode, in some embodiments, only network connections
using a same group identifier (group ID) can use the physical
NIC. This insures only network connections that are aware of
ports within the LAG can use the physical NIC port. The
physical NIC may remain in Port Group Membership Control
mode until the last member leaves the group.

Active and Standby LAG Port Controller Roles:

From the physical switch’s perspective, each port within
the LAG is connected to a single virtual switch uplink port. To
maintain this point-to-point level of LACP control, Multi-
VSwitch LAG may allow, at any given time, only one virtual
switch uplink port to perform LACP and Marker management
with the physical port, though all sharing uplink ports, includ-

20

35

40

45

60

12

ing the one performing [LACP and Marker management with
the physical port, will be able to send and receive data across
the LAG.

The virtual switch uplink port that is responsible for LACP
and Marker management for a specific physical switch port is
termed herein the active LAG Port Controller. By an uplink
port being the active LAG Port Controller is meant that the
management being performed is done via that uplink port.
Some or all of the other uplink ports of the virtual switches
sharing the same physical port are standby LAG Port Con-
trollers. A standby LAG Port Controller can send and receive
data but not perform LACP and Marker management with the
physical port until, and unless, it is selected to become the
active LAG Port Controller.

In a Multi-VSwitch LAG configuration, as described and
depicted with reference to FIG. 7, a NIC port (such as a
physical port of NIC 734 in communication with physical
partner switch 736) may be shared by multiple virtual switch
uplink ports. Once a NIC enters the Port Group Membership
Control mode, membership is controlled though a new NIC
command primitive issued by a joining virtual switch. In
some embodiments, only a virtual switch that is aware of the
same LAG will be able to establish a network connection on
the physical NIC. The entire group of network connections
activated on the NIC operate together to provide the illusion
of a single switch port to its partner switch.

FIG. 8 depicts example LAG Port Controller assignments
in an example LAG configuration in accordance with aspects
described herein. In FIG. 8, there is one active LAG Port
Controller for each physical port within shared LAG 846. In
FIG. 8, two NICs 834a and 8345 each have a physical port
that is part of LAG 846. NIC 834 has active network con-
nections with two uplink ports: uplink port 832a of virtual
switch 8284, and uplink port 832¢ of virtual switch 8285.
Similarly, NIC 83454 has active network connections with two
other uplink ports: uplink port 8325 of virtual switch 828a,
and uplink port 8324 of virtual switch 8284. For each physical
port of the LAG, there is an active LAG Port Controller. With
respect to NIC 834a’s physical port, uplink port 832a of
virtual switch 8284 serves as the active LAG Port Controller
for the shared port group that includes uplink ports 832« and
832c¢. Each other uplink port of that group (i.e. uplink port
832c¢ of virtual switch 8285) serves as a standby LAG Port
Controller. Similarly with respect to NIC 83454, uplink port
8324 of virtual switch 8285 serves as the active LAG Port
Controller for the shared port group that includes uplink ports
8325 and 832d, and each other uplink port of that group (i.e.
uplink port 8325 of virtual switch 828a) serves as a standby
LAG Port Controller. Each active LAG Port Controller is of a
different virtual switch in this example.

When the network connection between an active LAG Port
Controller and an associated NIC becomes inoperable, the
associated NIC selects a standby LAG Port Controller from
the group and makes it the new active LAG Port Controller.
Using the example above, if a network connection failure
occurs between NIC 8344 and active LAG Port Controller
832a, then NIC 8344 may select and assign standby LAG Port
Controller 832¢ to take over as the active LAG Port Control-
ler. At that point, the newly selected active LAG Port Con-
troller (832¢) can resume [LACP management using the same
port ID as the previous active LAG Port Controller (832a).
This transition of LACP communications from one LAG Port
Controllerto another LAG Port Controller may be transparent
to the partner switch 836 to insure sustained continuity of the
LAG.

Two different methods are provided to enable a NIC to
notify a virtual switch which LAG Port Controller role (e.g.

US 9,300,592 B2

13

active or standby) an uplink port of that virtual switch is to
assume. The first is through a reply to a solicited NIC com-
mand primitive Join Group or Query Group command issued
by the virtual switch. FIG. 9 depicts an example process for
activating a virtual switch uplink port, in accordance with
aspects described herein. The process of FIG. 9 illustrates
changes in the virtual switch uplink port activation logic for
handling a solicited active or standby LAG Port Controller
assignment for either a Multi-VSwitch LAG or a traditional
LAG configuration. In some embodiments, the process is
performed by the LAG virtualization layer or a hypervisor of
an LPAR hosting the virtual switch that includes the uplink
port being activated, though other components of a host sys-
tem may perform the process of FIG. 9.

The process begins by establishing a virtual switch
(VSwitch) uplink port network connection (902). It is deter-
mined whether the network connection is for a Multi-
VSwitch LAG configuration (904). If not, it is assumed that
the network connection is for a traditional configuration, and
the network connection becomes operational (910). If instead
the network connection is for a Multi-VSwitch LAG configu-
ration, then a NIC primitive Join Group is issued to the NIC to
create or join a logical group (906). The Join Group command
solicits a reply from the NIC. The reply to the Join Group
command will be received from the NIC and indicate which
role the virtual switch uplink port is to assume. When the
reply is received, if it indicates that the virtual switch uplink
port is selected by the NIC to be the active LAG Port Con-
troller, then the virtual switch uplink port assumes the role as
active LAG Port Controller, otherwise the virtual switch
uplink port assumes the role as standby LAG Port Controller
(908). The network connection then becomes operational
(910).

After the network connection becomes operational, the
IEEE 802.3ad Slow Protocol Group MAC Address is regis-
tered with the NIC to enable the network connection to
receive LACP and Marker Ethernet frames (912). The com-
mon Unique System ID generated and stored in the shared
port group at definition is used as the ACTOR’s System 1D
and Key.

Further, it is determined whether this uplink port is the
active LAG Port Controller (914) for the shared port group. If
so, the IEEE 802.3ad LACP Protocol is initiated and main-
tained (916) using this uplink port, in accordance with aspects
described below. After this initiating, or if at (914) it was
determined that the uplink port is not the active LAG Port
Controller for the shared port group, the process proceeds by
activating the uplink port and setting it up for data transfer
(918). Thereafter, the port group used to configure the LAG is
marked as active (920) (i.e. the LAG port is now operational
for data transfer within the group), and the process ends.

The Query Group command provides the ability for a shar-
ing virtual switch to solicit, at any time, an identification of
the virtual switch currently assigned the active LAG port
controller from the physical NIC. The Query Group primitive
will return an indication all the current VSwitch members in
the shared port group, along with an identification of the
VSwitch which is the acting LAG Port Controller.

A second way a NIC can notify a virtual switch that its
uplink port (for a given shared port group) is either an active
or a standby LAG Port Controller is through an unsolicited
adapter-initiated Group_State_Change primitive. A LAG
Port Controller transition encompasses new [LAG manage-
ment logic for handling an unsolicited active or standby LAG
Port Controller change for a Multi-VSwitch LAG configura-
tion. FIG. 10 depicts an example process for handling a LAG
Port Controller state change, in accordance with aspects

10

15

20

25

30

35

40

45

50

55

60

65

14

described herein. In some embodiments, the process of FIG.
10 is performed by the LAG virtualization layer or a hyper-
visor of an LPAR hosting the virtual switch that receives the
Group_State_Change primitive from the NIC, though other
components of a host system may perform the process of FI1G.
10.

The process begins by receiving the Group_State_Change
primitive (1002). This is received by a virtual switch from a
NIC through an uplink port of the virtual switch. This may be
received only when the virtual switch and NIC are in a Multi-
VSwitch LAG configuration as described above.

The process proceeds by determining whether the NIC has
(by way of the received Group_State_Change primitive)
assigned this virtual switch uplink port as the new active LAG
Port Controller for the shared port group (1004). If so, then
that means the uplink port is a standby LAG Port Controller
and is being signaled to take over as active LAG Port Con-
troller. Thus, the uplink port is assigned as being the active
LAG Port Controller (1006) for the shared port group, and a
LAG Need to Transmit (NTT) is signaled (1008). The NTT is
signaled to take over LACP communications by this (new)
active LAG Port Controller. To facilitate this take-over, infor-
mation such as the ACTOR and PARTNER ID to use
may already be known by the virtual switch receiving this
Group_State_Change primitive. This is because, in accor-
dance with aspects described herein, these are discovered by
all uplink ports of a shared port group listening to LACP
frames received, including when the port is in standby LAG
Port Controller mode. For the network connection of a
standby LAG Port Controller to transition to active LAG Port
Controller seamlessly with respect to the physical LAG port,
the standby LLAG Port Controller will listen but not participate
in any LACP protocol transmissions, as described below.

Continuing with FIG. 10, after signaling a LAG NTT
(1008), or if it was determined that the uplink port was not
assigned as the new active LAG Port Controller, then the
process proceeds by replacing the current list of group mem-
bers for this shared port group with the new list returned by
the NIC (1010). In this regard, a list of the active and standby
LAG Port Controllers are returned with the NIC generated
Group State Change primitive. A change in configuration
message is then generated and presented to an operator
(1012), and the process ends.

As noted above, for the network connection of a standby
LAG Port Controller to transition to active LAG Port Con-
troller seamlessly with respect to the physical LAG port, the
standby LAG Port Controller will listen but not participate in
LACP protocol transmissions. Both an active and standby
LAG Port Controller will activate its network connection
using a NIC command with the IEEE 802.3ad Slow Protocol
MAC Address. This enables both the active and standby LAG
Port Controller to receive a copy of all transmitted LACP
Ethernet frames sent from either the physical LAG portor the
active LAG Port Controller. Example processing of this LAG
slow protocol Ethernet frame handler is described and
depicted with reference to FIG. 11. The Multi-VSwitch LAG
Slow Protocol Handler of FIG. 11 illustrates changes in LAG
Slow Protocol logic. In some embodiments, the process is
performed by the LAG virtualization layer or a hypervisor of
an LPAR hosting the virtual switch that receives the LACP
Ethernet frame, though other components of a host system
may perform the process of FIG. 11.

The process of FIG. 11 begins by receiving a LAG Slow
Protocol Ethernet frame on the input buffer of a virtual switch
uplink port (1102). It is determined whether the received

US 9,300,592 B2

15
frame is a LAG link aggregation control plane (LACP) Eth-
ernet frame (1104). If not, then no further processing is
needed and the process ends.

If the received frame is an LACP Ethernet frame, then it is
determined whether the receiving uplink port is the active
LAG Port Controller for the shared port group of which the
uplink port is a member (1106). If this uplink port is the active
LAG Port Controller, then the LACP state ofthe PARTNER is
recorded (1108), a L ACP synchronization check is performed
(1110), the LACP state of the PARTNER is verified LACP
(1112), and a POSITIVE or NEGATIVE LACP response is
handled as appropriate (1114).

If instead at (1106) it was determined that the receiving
uplink port is not the active LAG Port Controller for this
shared port group, then the System 1D and Key of both the
ACTOR and PARTNER are recorded from the LACP frame
(1116). This information may be later used in the situation
that this uplink port later becomes assigned as the active LAG
Port Controller.

After handling the POSITIVE or NEGATIVE LACP
response (1114) in cases where the receiving uplink port is the
active LAG Port Controller, or after recording the ACTOR
and PARTNER System ID and Key in cases where the receiv-
ing uplink port is not the active LAG Port Controller, then the
process proceeds by determining whether the received frame
is a Marker Ethernet frame (1118). If not, the process ends.
Otherwise, the process initiates [LAG slow protocol Marker
handling (1120), described below with reference to FIG. 12,
then ends.

IEEE802.3ad Marker PDU Processing:

IEEE 802.3ad Marker PDU protocol is used by a virtual
switch’s LAG load balancing and forwarding logic to trans-
parently move outbound data transmissions for a specific
destination MAC address from one physical port to another
within the LAG. The IEEE Marker protocol is a two-step
process that insures all previously virtual-switch-sent Ether-
net frames have been received and processed by the partner
(physical) switch before switching future data transmissions
to another physical port. Flushing all pending outbound trans-
missions on a physical port prior to switching to another port
prevents the destination host from receiving frames out of
order.

Virtual Switch Member Initiated Marker PDU—In a
Multi-VSwitch LAG configuration, both an active and
standby LAG Port Controller may be responsible for load
balancing, equally across all ports within the LAG, data trans-
missions from their respective virtual switch. Therefore, both
the active and standby LAG Port Controllers are able to
transmit and receive a response to a Marker Ethernet PDU.
Doing so allows any sharing virtual switch to flush its out-
bound transmission queue before switching from one physi-
cal port to another physical port. Marker Ethernet PDU pro-
cessing in accordance with aspects described herein is
somewhat different from the way a LACP Ethernet PDU is
handled in other configurations.

The slow protocol handler will keep track of a Marker PDU
it transmits to a physical switch. Since both active and
standby LAG Port Controllers are registered to the slow pro-
tocol multicast group, the NIC will send a copy of each
Marker Ethernet PDU to every sharing network connection
(i.e. each uplink port in a shared port group will receive this
Marker Ethernet PDU). It is then up to the receiving virtual
switch to determine whether it should process or ignore a
Marker Ethernet PDU it receives. In a Multi-VSwitch LAG
configuration, a Marker generated by a sharing virtual switch
member may be ignored by all the other sharing virtual
switches. Only a Marker generated by the physical switch is

20

25

30

35

40

45

55

16

processed by the target virtual switch, although in accordance
with aspects described herein, the action taken by the active
LAG Port Controller is different from the action taken by a
standby LLAG Port Controller.

Sending a Marker PDU—A virtual switch that is in a
logical group and generates a Marker creates a transaction ID
that is unique to its targeted NIC. This prevents the physical
switch port from ever seeing duplicate transaction IDs on
Marker PDUs sent from virtual switches sharing the same
physical port. Since all sharing network connections see
Marker Responses of all other sharing network connections,
outstanding Markers with the same transaction 1D would
erroneously cause sharing network connections to resume
marker processing prematurely on receipt of the first Marker
Response.

To insure uniqueness across all sharing virtual switches, a
one-byte (in this example) NIC command primitive Join
Group Connection ID returned by the NIC in response to a
successful join request is included in byte one of the Marker
Transaction ID generated as shown below:

NIC provided Virtual Switch Generated Token
Port Number (0-7) connection ID (0-x’FFFE’)
Byte 0 Byte 1 Bytes 2 & 3

The NIC insures each active virtual switch of a Join Group
logical group is assigned a unique Connection ID. The Con-
nection ID is dynamically assigned by the adapter and, once
it is assigned, will not change as long as the network connec-
tion remains active. Only when a virtual switch’s network
connection is restarted might it possibly change.

Receiving a Marker Response PDU—When a Marker
Response from a physical switch is received, each virtual
switch in the logical group will check the transaction ID to see
whether it originated the Marker. Only a Marker Response
generated by the issuing virtual switch is processed. All other
sharing virtual switches in the logical group will ignore the
Marker Response.

Responding to a Physical Switch Initiated Marker PDU—
The active LAG Port Controller coordinates standby LAG
Port Controller responses before generating the Marker
Response to the physical switch port. Although each virtual
switch sharing the LAG port has the ability to send and
receive a Marker Response, a standby LLAG Port Controller is
not to respond to an IEEE Marker sent by any of (i) the
physical partner switch, (ii) the active LAG Port Controller, or
(iii) another standby LAG Port Controller. The active LAG
Port Controller responds to a Marker sent by a physical switch
port, and the active LAG Port Controller responds with a
Marker Response after it receives notification from the
standby LLAG Port Controllers sharing the physical port.

Whenever a standby LAG Port Controller receives an IEEE
Marker from the physical switch port, it creates and sends a
LAG Marker Response to the active LAG Port Controller,
rather than responding directly to the physical switch port.
The unicast LAG Marker Response is sent to the active LAG
Port Controller on the same network connection it was
received. Once the active LAG Port Controller receives a
LAG Marker Response from every standby LAG Port Con-
troller in the logical group, it responds to the Marker sent by
the physical switch with an IEEE Marker Response. Waiting
for all of the standby LLAG Port Controllers to respond with a
LAG Marker Response before responding to the physical
switch ensures all sharing network connections are flushed.

US 9,300,592 B2

17

Thus, after a physical switch sends a Marker PDU to a
physical port, the Marker is received at each virtual port of the
shared port group. Standby LAG Port Controllers receive the
Marker (assume 1D 00000001) but will discard it. They will
send an encapsulated LAG Marker Response for ID
00000001 to the active LAG Port Controller. The active LAG
Port Controller also receives the Marker with ID 00000001 It
will wait for all standby LAG Port Controllers to either
respond or time-out. If the active LAG Port Controller deter-
mines that each standby LAG Port Controller has provided an
encapsulated LAG Marker Response to the active LAG Port
Controller without timing out, the active LAG Port Controller
then sends an IEEE Marker Response to the physical switch
in response to the Marker PDU send to the physical port. The
physical switch receives the response as an indication that all
sharing network connections have been flushed.

Active LAG Port Controller Marker Response Time-Out
Processing—As noted above, the active LAG Port Controller
tracks responses/time-outs of the standby LAG Port Control-
lers when Marker Responses are expected from them. The
active LAG Port Controller will keep track of an outstanding
Marker Transaction ID (0000001 in the above example) it
received from a physical switch for a selected maximum time
frame, such as four seconds. The time frame may be the same
amount of time currently used for a physical switch to
respond to a Marker generated by a virtual switch. If a LAG
Marker Response is not received from each standby LAG Port
Controller within this time, a Marker Response will not be
sent to the physical switch port by the active LAG Port Con-
troller. This is no different from current practice when a
physical switch port does not respond to a Marker sent by a
partner virtual switch.

Accordingly, FIG. 12 depicts an example process for LAG
slow protocol Marker handling, in accordance with aspects
described herein. In some embodiments, the process of FIG.
12 is performed by the LAG virtualization layer or a hyper-
visor of an LPAR hosting the virtual switch that receives the
Ethernet frame, though other components of a host system
may perform the process of FIG. 12.

The process begins by determining whether the received
frame is a Marker Ethernet frame (1202). If so, it is deter-
mined whether the present LAG configuration is a Multi-
VSwitch LAG configuration (1204). If not, then an IEEE
Marker Response to the Marker just received from the physi-
cal switch port is sent in response (1206), as is conventionally
done, then the IEEE Marker PDU is discarded (1208), and
processing of this frame ends. Otherwise, if at (1204) it is
determined that the present LAG configuration is a Multi-
VSwitch LAG configuration, it is determined whether the
IEEE Marker Response PDU was sent by the physical switch
port (1210). Given there are multiple virtual switches sharing
the same port, there is no guarantee which virtual switch will
receive a copy of the physical marker first. Standby LAC Port
Controllers may be responsible for sending Marker responses
to the active LAG Port Controller, and the active LAG Port
Controller can receive Marker Responses from the physical
switch or from the standby LAG Port Controllers. It is con-
ceivable, then, that a standby L AG Port Controller can receive
and notify the active LAG port controller prior to the active
LAG Port Controller actually receiving its copy of the marker.
The process of FIG. 12 is performed by each of the virtual
switches when a physical marker is received, thereby allow-
ing markers to be received and handled appropriately without
respect to order. If the IEEE Marker Response PDU was not
sent by the physical switch port, then the IEEE Marker PDU
is discarded (1208) and processing of this frame ends.

10

15

20

25

30

35

40

45

50

55

60

65

18

If instead the IEEE Marker Response was sent by the
physical switch port, it is then determined whether the receiv-
ing virtual switch port is a standby LAG Port Controller
(1212). If the receiving virtual switch port is not a standby
LAG Port controller, then by implication it is the active LAG
Port Controller. One responsibility of the active LAG Port
Controller when receiving a Marker Ethernet frame from the
physical switch, as is the case here, is to track the Marker
Responses that are to be received by this switch port (as the
active LAG Port Controller) from the standby LLAG Port
Controllers. Thus, the active LAG Port Controller initiates
tracking of the responses (1214). In one example, the active
LAG Port Controller establishes a Multi-VSwitch Marker
queue to keep track of the responses received from the
standby LAG Port Controllers (i.e. track which standby LAG
Port Controllers have provided a response). After initiating
tracking of responses, the IEEE Marker PDU is discarded
(1208) and processing of this frame ends.

If instead at (1212) it is determined that the receiving
virtual port is a standby LAG Port Controller, then a LAG
Marker Response is sent to the active LAG Port Controller via
the uplink port network connection through which the Marker
Ethernet frame was received (1216). The IEEE Marker PDU
is discarded (1208) and processing of this frame ends.

Returning to inquiry (1202), if it was determined that the
received frame is not a Marker Ethernet frame, the process
proceeds by determining whether the received frame is a
Multi-VSwitch LAG Marker Response (1218). As described
above, Multi-VSwitch LAG Marker Responses are the encap-
sulated Marker Responses sent from standby LAG Port Con-
troller(s) in response their receiving a Marker Ethernet frame
from a physical switch port (i.e. refer to 1210 and 1216
above). Thus, if at (1218) it is determined that the received
frame is a Multi-VSwitch LAG Marker Response, then the
receiving LAG Port Controller of this frame is the active LAG
Port Controller. Accordingly, it is determined whether more
than one standby LLAG Port Controller exists in this group
(1220). If not, then the Multi-VSwitch LAG Marker
Response that was received came from the only standby LAG
Port controller that exists in the group, and therefore a Multi-
VSwitch LAG Marker Response has been received from all
(one) standby LAG Port Controller of the group. Thus, an
IEEE Marker Response PDU is sent to the physical switch
port (1222), the Marker PDU is discarded (1230) and pro-
cessing of this frame ends.

If instead at (1220) it is determined that more than one
standby LAG Port Controller exists in this group, the received
Multi-VSwitch LAG Marker Response is tracked for the
Marker 1D indicated therein (1224). This is facilitated using
the Multi-VSwitch Marker queue that was established when
the tracking of responses for the given Marker ID was initi-
ated (1214 above). In some embodiments, the Multi-VSwitch
Marker queue tracks which, and how many, standby LAG
Port Controllers have provided a Multi-VSwitch Marker
Response for the given Marker ID. Based on receiving the
present Multi-VSwitch Marker Response, the counter for the
number of encapsulated responses received is incremented
(1226). It is then determined, based on the data in the Multi-
VSwitch Marker queue for instance, whether a Multi-
VSwitch Marker Response has been received from each
standby L AG Port Controller of the group (1228). If so, then
the process proceeds by sending an IEEE Marker Response
PDU to the physical switch port (1222). The received Multi-
VSwitch Marker Response PDU is discarded (1230), and
processing of the received frame ends. Otherwise, a Multi-
VSwitch Marker Response has yet to be received from at least
one remaining standby LAG Port Controller, thus processing

US 9,300,592 B2

19
discards the received Marker Response PDU (1230), and
terminates, awaiting further Responses or time-out.

Removing an Operational Port from a Multi-VSwitch
LAG:

According to aspects described herein, the process to
remove an operational LAG port on a virtual switch managed
by a hypervisor from a shared port group may not use the
three phase commit protocol used when adding a physical
port to a LAG. The NIC feature (such as an OSA Express
feature of an OSA Express network adapter) for the port being
removed may serialize the port removal. When a Leave Port
Group (SET PORT GROUPxLEAVE) command is issued by
a system administrator on a hypervisor (such as zVM) image
that supports the virtual switch having a standby LAG Port
Controller, the port removal request is broadcasted to the
hypervisor owning the virtual switch port that is the active
LAG Port Controller for handling.

When the active LAG Port Controller receives a port
removal request from a provided VSwitch-to-VSwitch com-
munication control plane (termed an Inter-VSwitch link
(IVL), or hypervisor network herein), the active LAG Port
Controller may issue a SETGROUPPARMS: DELETE
GROUP command to the OSA Express feature, which may in
turn cause the OSA Express feature to delete the shared port
group, thus causing the adapter to terminate the network
connection (Activate-QDIO-Queues CCW with a Unit
Check). The sense data return will reflect a command reject
with code SETGROUPPARMS Port Group Deleted, which
informs the active LAG Port Controller to skip device recov-
ery and take down the network connection. The LAG virtu-
alization layer may then inform the hypervisor to detach the
devices associated with the network connection and remove
the port from its shared port group.

With the OSA Express feature (in the above example)
handling the port removal, a number of pathological error and
serialization concerns are eliminated. It also insures the OSA
Express feature is immediately cleaned up and available for
use by any operating system.

Ability to Remove and Add Virtual Switches in a Multi-
VSwitch LAG:

A virtual switch can participate in a Multi-VSwitch LAG
configuration only when it has network connectivity to all the
ports comprising a physical LAG. For this reason the Join
Port Group or Leave Port Group command (SET PORT
GROUP LEAVE or SET PORT GROUP JOIN commands)
for a shared port group has a global rather than a local scope.
This prevents any one virtual switch in the group from having
partial connectivity to the physical LAG.

On the other hand, it makes perfect sense to have the
capability to remove a single sharing virtual switch from a
LAG, and a Multi-VSwitch LAG configuration provides this
behavior. Existing virtual switch commands for connecting
and disconnecting uplink port connectivity may still have a
local virtual switch scope. As used today in conventional
LAG configurations, these commands can either instantiate
or terminate all network connections associated with a LAG,
thus removing or adding virtual switch external connectivity
to a physical LAN segment for the sharing virtual switch they
are issued against.

Although these functions (i.e. SET VSWITCH) of a virtual
switch remain a local scope, there is a difference in the man-
ner in which a network connection is terminated when dis-
connecting from the shared LAG (i.e. SET VSWITCHxDIS-
CON). This is to prevent the NIC (e.g. OSA Express feature)
from performing a MAC address take-over recovery action
for a sharing virtual switch that is leaving the LAG (see MAC
Address Take-over below for more details).

5

10

15

20

25

30

40

45

50

55

60

20

FIG. 13 depicts an example process for a virtual switch
uplink disconnect, in accordance with aspects described
herein, and illustrates changes to, for instance, a hypervisor’s
uplink port termination logic.

Initially, network connection termination is initiated for
each network connection in the LAG (1300). The process
continues by determining whether the present LAG Configu-
ration is a Multi-VSwitch LAG configuration (1302). If not,
then the existing method (in conventional LAG configura-
tions) for terminating a virtual switch uplink port connection
may be deployed (1304). Otherwise, if the present LAG Con-
figuration is a Multi-VSwitch LAG configuration, then a new
NIC Remove Port primitive is issued to terminate the network
connection (1306). This command informs the NIC to termi-
nate the network connection without performing a MAC
Address Take-over recovery action (described below).

MAC Address Take-Over and Take-Back:

With a Multi-VSwitch configuration, the physical switch
end of the LAG may have no knowledge that there may be
multiple network connections (virtual switches) sharing the
same physical NIC port. From the physical switch’s perspec-
tive, it can forward an Ethernet frame up any physical port
within the LAG to reach its intended destination. A Multi-
VSwitch configuration maintains this basic LAG design
point. Thus, the provided LAG virtualization layer is able to
maintain connectivity even if one of the sharing virtual
switches looses a network connection to one of the physical
ports within the LAG.

If one of the virtual switches sharing the LAG temporarily
looses a network connection to one of the physical ports
within the LAG, the NIC can automatically select another
operational virtual switch to take-over all the media access
control (MAC) addresses from the failing virtual switch. The
NIC may notify the selected virtual switch taking over the
MAC addresses via the network connection between the NIC
and the selected virtual switch, and using a new NIC com-
mand primitive: Register Local MACs request (such as a
SETGROUPPARM: REGISTER_LOCAL_MAC_AD-
DRESS request). This new NIC-initiated notification informs
the virtual switch that it is now responsible for forwarding, to
the host (of the virtual switch experiencing the failing net-
work connection), network frames that the take-over virtual
switch subsequently receives but which are directed to the
specified MAC addresses of that failing host. The means
(local networking infrastructure) to send this traffic may be
provided by the hosting hypervisor.

FIG. 14 depicts an example process for handling a request
to take over processing of network frames, in accordance
with aspects described herein. FIG. 14 illustrates LAG man-
agement logic processing by a LAG virtualization layer or
hypervisor of a take-over virtual switch, for instance, for
handling an unsolicited NIC command primitive: Register
Local MACs (e.g. SETGROUPPARMS: REGISTER_LO-
CAL_MAC_ADDRESS) fora Multi-VSwitch LAG configu-
ration.

The processing of FIG. 14 is initiated based on receiving a
Register Local MACs command, for instance, from a shared
NIC. The process begins by entering a loop beginning with a
determination of whether there are more take-over MAC
addresses to process (1402). The take-over MAC addresses
may be indicated in the command received from the request-
ing NIC. Assuming there are additional take-over MAC
addresses to process, the process continues by allocating a
new take-over pseudo NIC for a next take-over MAC address
(1404), storing the failing host’s (virtual switch’s) MAC
address, returned by the NIC, in the newly allocated pseudo
NIC (1406), storing the owning network connection of this

US 9,300,592 B2

21

take-over MAC address in the new pseudo NIC (1408), and
registering the take-over MAC address in the virtual switch’s
LAN hash table (1410). Storing the owning network connec-
tion may store the identification of the owning hypervisor, so
that any frame received for the MAC can be routed to the
appropriate hypervisor via the IVL. When the NIC sends up
the Register Local MAC Address primitive to the VSwitch
Port that the NIC has selected to “takeover” the MAC
addresses, it may also include the name of the VSwitch Port
which was the original owner of the MAC addresses. The
VSwitch receiving the Register Local MAC Address primi-
tive uses this information to store the owning network con-
nection information in the new pseudo NIC. In a configura-
tion utilizing OSA Express network adapters, the
SETGROUPPARMS: REGISTER_LOCAL_MAC_AD-
DRESS command may be received on the controller’s READ
device and the controller may package the SETGROUP-
PARMS: REGISTER_LOCAL_MAC_ADDRESS request it
receives into a new *VSwitch message and send it down to the
hypervisor. The pseudo NIC may be a network interface
device control block (NIDBK).

After registering the MAC address in the hash table (1410),
the process returns to (1402) to determine whether there are
any more take-over MAC addresses to process. In this man-
ner, the process of FIG. 14 repeats to register each take-over
MAC address indicated by the NIC as being those for which
the selected virtual switch is to take-over processing until the
failing virtual switch’s network connection is restored. If
there are no more take-over MAC addresses to process, the
process ends. At that point, the virtual switch that received the
command is setup to forward network frames it receives for
these take-over MAC addresses to the hypervisor network
(IVL network) for distribution to its appropriate destination.
The take-over MAC addresses are registered in the virtual
switch’s LAN hash table, and therefore the virtual switch has
the ability to forward any unicast frames it receives from its
uplink port’s network connection for these MAC addresses to
the hypervisor network for provision to the intended destina-
tion.

FIG. 15 depicts an example process for handling a received
network frame, in accordance with aspects described herein.
The received network frame is a unicast datagram received
for distribution to the virtual switch’s LAN segment. In some
embodiments, the process of FIG. 15 is performed by the
LAG virtualization layer or a hypervisor of an .LPAR hosting
the virtual switch that receives the network frame, though
other components of a host system may perform the process
of FIG. 15.

The process begins by determining whether the destination
MAC address for this frame is found in the virtual switch’s
LAN hash table (1502). If not, then it is determined whether
the datagram was received on the uplink port’s input queue
(1504). If so, the destination does not exist on this virtual
switch, the datagram is discarded (1506), and the process
ends. Otherwise, if the datagram was not received on the
uplink port’s input queue, then the destination is unknown
and the datagram is forwarded to the virtual switch’s uplink
port for resolution (1508) by initiating an asynchronous task
to move the datagram into the uplink port’s output queue
(1510), such as an output QDIO queue. The process then
ends.

Returning to (1502), if it is determined that the destination
MAC address for this frame is found in the virtual switch’s
LAN hash table, then it is next determined whether the des-
tination MAC address is a take-over MAC address (1512) (i.e.
whether it is registered as such in the LAN hash table). If not,
then the datagram is appended to its intended destination

30

40

45

55

22

(1514) by initiating an asynchronous task to move the data-
gram into a guest port (or a bridgeport’s QDIO queue, for
instance) (1566), and the process ends. Otherwise, i.e. the
destination is a take-over MAC address, the datagram is sent
from the pseudo NIC to the hypervisor network with the
failing host’s (switch’s) MAC address for distribution on the
hypervisor network (1518), and the process ends.

Once a take-over MAC Address is registered in the virtual
switch’s LAN hash table, it may remain registered therein
until the MAC address is either (i) taken back by the original
virtual switch that registered the MAC address and based on
recovering from its failure, or (ii) the network connection of
the uplink port where the take-over MAC address is registered
(i.e. the take-over connection) becomes inoperable. In this
latter scenario, program logic may be added in the virtual
switch uplink port termination logic to purge all take-over
registered MAC addresses in the virtual switch’s LAN hash
table for the network connection being terminated.

When the network connection for the original failing vir-
tual switch recovers, it will register again the MAC addresses
that were taken over by other virtual switch. The NIC may be
configured not to fail the host registration of these MAC
addresses (as a duplicate MAC failure) that were taken over.
Rather, the NIC may perform a new MAC address take-back
operation. The NIC feature may move the take-over MAC
address(es) from its current network connection (the virtual
switch that took over frame handling for the failing virtual
switch) to the now-recovered virtual switch’s network con-
nection attempting to register and take-back the MAC
addresses. The MAC address type may be changed from a
take-over classification (indicating they have been taken
over by a backup virtual switch) to a host-registered MAC
address classification. At this point the NIC will notify the
virtual switch that temporarily owned the take-over MAC
address(es) with a NIC command primitive: Unregister Local
MACs command (SETGROUPPARM: UNREGISTER_LO-
CAL_MAC_ADDRESS request). This will unregister the
MAC addresses from the virtual switch to unregister process-
ing of network frames received by the virtual switch and
destined for those MAC addresses.

Thus, FIG. 16 depicts an example process for handling a
request to unregister processing of network frames, in accor-
dance with aspects described herein. FIG. 16 illustrates LAG
management logic for handling an unsolicited NIC command
primitive: Unregister Local MACs command for a Multi-
VSwitch LAG configuration. In some embodiments, the pro-
cess of FIG. 16 is performed by the LAG virtualization layer
or a hypervisor of an LPAR hosting the virtual switch that
receives the request to unregister processing of network
frames, though other components of a host system may per-
form the process of FIG. 16.

The processing of FIG. 16 is initiated based on receiving an
Unregister Local MACs command, for instance. The process
begins by entering a loop beginning with a determination of
whether there are more take-back MAC addresses to process
(1602). The take-back MAC addresses are those that were
prior registered as take-over MAC addresses but are being
taken-back based on, for instance, the network connection
that previously failed regaining connectivity.

The take-back MAC addresses may be indicated in the
command received from the requesting NIC. Assuming there
are one or more take-back MAC addresses (indicated in the
command) to process, the process continues by determining
whether a next indicated take-back MAC address is found in
the virtual switch’s LAN hash table as a take-over MAC
address (1604). If not, the process ends and may indicate an

US 9,300,592 B2

23

error. Alternatively, the process may continue back to (1602)
to move onto the next indicated take-back MAC address.

If the indicated next take-back MAC address was found in
the LAN hash table (1604), the process continues by deleting
the pseudo NIC for the next take-over MAC address (1606),
and removing the MAC address form the virtual switch’s
LAN hash table (1608). In a configuration utilizing OSA
Express network adapters, the SETGROUPPARMS:
UNREGISTER_LOCAL_MAC_ADDRESS command
may be received on the controller’s READ device and the
controller may package the SETGROUPPARMS: UNREG-
ISTER_LOCAI_MAC_ADDRESS request it receives into a
new *VSwitch message and send it down to the hypervisor.

After removing the next take-back MAC address from the
hash table (1608), the process returns to (1602) to determine
whether there are any more take-back MAC addresses to
process. In this manner, the process of FIG. 16 repeats to
unregister each take-back MAC address indicated by the NIC.
If all indicated take-back MAC addresses have been pro-
cessed, the process ends. At that point, the virtual switch (that
received the command) is no longer configured to handle
processing of network frames directed to those MAC
addresses that were just taken-back.

Inter VSwitch Link (IVL) Data Plane Operations:

An IVL manager supports the transmission of production
work load traffic over an IVL data plane. This data plane
communication may be used by the Multi-VSwitch LAG in
support of a MAC Address Take-Over recovery operation.
The IVL is a communications link between the virtual
switches. It serves as the means for the LAG virtualization
layers within the hypervisors to communicate with each
other. As described above, a take-over operation is a condition
where one VSwitch takes over the transferring and receiving
of production data with the partner physical switch on behalf
of another VSwitch configured to share the same NIC feature.
The operational role of the IVL. manager in a take-over opera-
tion is presented below with reference to FIG. 17.

As described above, MAC address take-over may be initi-
ated by the NIC (e.g. OSA-Express feature) whenever a net-
work connection sharing a specific LAG port becomes inop-
erable. In the case of a network failure, one of the remaining
active network connections will take over customer produc-
tion data transfer operations for the failing VSwitch member
through the IVL Data Plane. The following use case presents
take-over operations focusing on the IVL manager in concert
with the OSA-Express feature. A role of the IVL data plane
through the duration of a take-over event may be to provide
temporary transport of customer production workload for a
shared port group until connectivity is restored for its LAG
Port Controller.

VSwitch IVL communications may be encapsulated using
a new [VL. MPDU structure (MAC Protocol Data Unit). This
new protocol may flow between the hypervisor images
through an IVL VSwitch and the shared port connection
provided by a NIC feature of distinct NIC features connected
to an IVL VSwitch.

An example IVLMPDU format for IVL. Manger data plane
communication is as follows:

IVL Manager Data Plane Communication

2 byte PDU Type: x'0001'

1 byte PDU Operation x'0000' (Encapsulated)

2 byte PDU Sub-Type: x'0006' (Customer Production
Payload)

1 byte PDU Format: x'00"

1 byte Reserved

8 byte EBCDIC VSwitch Global ID

8 byte EBCDIC z/VM VSwitch Member Name

10

15

20

25

30

35

40

45

55

60

o
o

24

An example LAG Port Controller take-over sequence in
accordance with aspects described herein is provided with
reference to FIG. 17. The flow described with reference to
FIG. 17 is built on the preface that VSwitch RICK.A (1728a)
and VSwitch RICK.B (1728b) are members of the same Glo-
bal VSwitch RICK (1750).

At 1, an unexpected connectivity outage develops between
a standby LAG Port Controller (VSwitch Uplink Port 1732a)
of VSwitch RICK.A (17284a) and its OSA-Express feature
1734d. Being there is still a functional sharing LAG Port
Controller connection (i.e. 1752a) to this OSA-Express fea-
ture 17344, the OSA-Express feature 1734d will not drop the
light to (inform) the physical partner switch (not pictured). In
this case, the physical partner switch will continue to send
inbound data destined for the non-operational LAG Port Con-
troller 17324 of VSwitch RICK.A 1728a.

At 2, this connectivity outage of uplink port 1732a will
result in frames directed thereto being dropped by the OSA-
Express feature 17344 unless another network connection
takes-over handling of frames directed to the MAC addresses
being serviced by VSwitch RICK.A 1728a. To mitigate this
loss of connectivity (and frame discards) the OSA-Express
feature 1734d selects another sharing VSwitch LAG Port
Controller to “take-over” for non-operational LAG Port Con-
troller 1732a of Global VSwitch RICK. A 1728a.

At 3, the OSA Express feature selects the sharing LAG Port
Controller 17326 on VSwitch RICK.B 17285 by sending a
SETGROUPPARMS Register Local MAC Address com-
mand to VSwitch RICK.B 17286 indicating the take-over
MAC addresses. VSwitch RICK.B 17286 updates its LAN
hash table with the take-over MAC addresses, which repre-
sent the virtual NICs of VSwitch RICK.A 1728a. Frames
targeted for VSwitch RICK.A 17284 will not discarded but
instead will be sent by OSA Express feature 1734d to
VSwitch RICK.B 17285 to forward to VSwitch RICK.A
1728a.

At 4, VSwitch RICK.B 172856 will, as part of its table
HASH look-up, resolve a destination MAC address of a frame
received (inbound) from OSA-Express adapter 17344, and
determine that the destination MAC address is not local, but is
a “take-over” MAC address. This NDMBK (frame) may be
“sent” to the resident IVL. VSwitch 17545 for delivery to
VSwitch RICK.A 1728a. A new IVL Encapsulation Handler
may operate as follows:

The customer production payload NDMBK may be encap-
sulated (appended) to another NDMBK that contains a
new Ethernet Header, and an IVLMPDU.

IVL PDU type

PDU Operations Flag—Encapsulated
PDU Sub-type—Customer Production Payload
Target VSwitch Name and the unicast MAC address of

the hypervisor’s IVL. Manager (received from
OSAExpress feature 1734d through the take-over
process)

The customer portion of the payload may retain its original
NDMBK(s), Ethernet header and payload.

LPAR A’s IVL Manager unicast MAC—Destination
MAC passed to the IVL Encapsulation Handler is
inserted into the Ethernet Header of the prefixed
NDMBK block. IVL VSwitch A 1754q).

At 5, IVL VSwitch logic may place the new NDMBK chain
on one of LPAR B’s (17245) IVL VSwitch Uplink Ports
(1758b) for provision to VSwitch RICK.A.

At 6, the Ethernet payload may be directly received and
delivered by the Primary OSA-Express feature of LPAR A’s

US 9,300,592 B2

25
(1724a) IVL VSwitch 1754a or, as here, may go through a
single hop on the wire 1760 to reach another Primary OSA-
Express feature 1762.

At 7, once the Ethernet payload is received at uplink port
17584 of IVL. VSwitch 17244, the IVL VSwitch 1754a places
the Ethernet payload from the QDIO Input Queue into NDM-
BKs. The NDMBKSs are sent for transmission to LPAR A’s
(1724a) IVL Port 1756a.

At 8, after the IVL Dispatcher receives the payload from
the IVL NIC Driver, it interrogates the IVLPMDU:

IVL PDU type

PDU Operations Flag indicates encapsulated NDMBK

(payload)

Payload is Customer Production Data

Based on the [IVLMPDU, the IVL Dispatcher may hand off
the payload to the IVL Data Plane Communications Han-
dler’s extraction routine, which will use the Source Object
Token in the IVLMPDU header to locate VSwitch RICK.A’s
(1728a) LANBK. The IVL Data Plane Communications
Handler may remove and return the prefixed NDMBK block
(encapsulation) and restore the first NDMBK of the custom-
er’s payload as the header. This payload may be queued
(pointer move) in VSwitch RICK.A (1728a) as if it was
received by its native uplink port (i.e. 1732a) ready to be
delivered to its target guest virtual NIC.

Further details are now provided for MAC address take-
over functions using various SETGROUPPARMS com-
mands.

An aspect of a SETGROUPPARMS logical group (shared
port group) is its ability to automatically take-over data trans-
fer for a member that unexpectedly leaves the group due to,
for instance, a network connection malfunction. If a host
network connection (network connection between a virtual
switch uplink port and a physical NIC) is made inoperable by,
for instance, a Clear Subchannel (CSCH) Instruction, Halt
Subchannel (HSCH) instruction, or an unrecoverable error
condition detected by the OSA Express feature, for instance,
then unicast and multicast MAC addresses currently regis-
tered on the failing network connection may be moved by the
OSA Express feature to another active network connection
within the shared port group.

The above functionality may be controlled by the OSA
Express feature. It is up to the OSA Express feature to select
any existing shared group member it wants to handle data
transfer for the failing network connection. The network con-
nection selected will handle future data transfers for the MAC
addresses it took over until a new or an existing network
connection in the group registers the take-over MAC
addresses via, for instance, a SETVMAC, SETGMAC or a
new Block MAC Address Registration (SETBMAC) OSA
Express feature primitive. Therefore, it is the OSA Express
feature’s responsibility to keep track of not only the MAC
address but also how the MAC address was registered.

In accordance with aspects described herein, an OSA
Express feature registered MAC address can be classified
either as a “host” or a “take-over” type MAC address. A MAC
address registered by a host on a network connection using
either a SETVMAC, SETGMAC or a new Block MAC
Address Registration (SETBMAC) primitive is considered to
be a“host” registered MAC Address, whereas a MAC address
that was registered as a result of a MAC address take-over by
the OSA Express feature is considered as a “take-over” type
MAC address registration.

MAC Address Take-Over—Whenever a network connec-
tion is abnormally terminated by either the host or OSA
Express feature, the adapter may change the connection ID
associated with the MAC address to a fully operational net-

10

20

25

30

35

40

45

50

55

60

65

26

work connection of its choosing. After the connection 1D
change is made, the MAC address type may be changed to a
“take-over”. If the take-over MAC address is a multicast
address and it is already registered in the new network con-
nection, then the MAC address type may not be changed in
the new network connection.

Ifthere is no other member in the logical group (shared port
group) to take-over the MAC address, then the OSA Express
feature may skip the take-over operation altogether and per-
form its normal termination processing. At this point, the
logical group may be deleted and the adapter removed from
“Group Exclusive” (Port Group Membership Control) mode.
When out of Port Group Membership Control Mode, the
adapter can be used by other LPARs/hypervisors not partici-
pating in the Multi-LAG Port Group function. In some situ-
ations, take-over may occur only if there is more than one
network connection in a logical group.

Whenever an OSA Express feature changes a MAC
address type from “host” to “take-over”, it notifies the host
taking over the MAC address. The notification is performed
by, for instance, using a new adapter initiated layer-2 SET-
GROUPPARMS: REGISTER_LOCAL_MAC_ADDRESS
command. The primary purpose of this new asynchronous
notification is to inform the host it must start forwarding
Ethernet frames received with this destination MAC address
to a different host operation with the following information:

8 Byte Host Name of the failing host

6 Byte Host Unicast MAC Address of the failing host

Failing Device Address and Port Number

Array of Unicast and Multicast Take-over MAC Address

When a virtual switch in a shared LAG receives a SET-
GROUPPARMS: REGISTER_LOCA_L MAC_ADDRESS
command, it may take the list of MAC addresses received and
register them into its LAN hash table, as described above with
reference to FIG. 14. The hash table entry (NIDBK) for each
MAC address registered may point to the IVL. VSwitch’s IVL.
Port instead of a guest or logical guest port on the VSwitch
(see FIG. 17). Associated with this MAC address may be the
6 byte Host unicast MAC address returned by the SET-
GROUPPARMS: REGISTER_LOCAL_MAC_ADDRESS
command. The unicast MAC address returned may be for the
7z/VM host where the guest owning the MAC address resides.
Once the MAC address is registered, an Ethernet frame
received for this destination MAC address may be forwarded
directly to this system’s IVL Manager instead of guest or
logical guest port. The IV, Manager may then encapsulate
the frame and send it across the IVL to its appropriate z/VM
Host for distribution to the guest, as shows in FIG. 17.

MAC Address Take-Back—Once a MAC address is taken
over by another network connection due to an abnormal ter-
mination in a SETGROUPPARMS logical group, the host
taking over the MAC address may be responsible for forward-
ing Ethernet frames it receives for that MAC address to the
appropriate host for distribution. In embodiments involving
7/VMs, the Ethernet frame may be forwarded through a dif-
ferent IVL network connection to an appropriate host for
distribution. The network connection may perform this take-
over operation until the failing or a different network connec-
tion takes back the MAC address.

A host takes back a MAC address by registering it on a
network connection using either a SETVMAC, SETGMAC,
or a new Block MAC Address Registration (SETBMAC)
primitive, as examples. This could be either the same network
connection that currently owns the take-over MAC address or
another network connection in a SETGROUPPARMS logical

US 9,300,592 B2

27

group. Typically, it will be the original (failing) network
connection, when it reestablishes its network connection after
recovering from the failure.

Whenever a host registers a MAC address that is already
registered in the OSA Express feature as a “take-over” MAC
address, the host may “take-back™ data transfer responsibili-
ties for the registered MAC address. This action may cause
the OSA Express feature to change the MAC address type
from “take-over” to “host” and the connection ID to the
network connection registering the MAC address.

Once a host’s network connection takes back a MAC
address, the OSA Express feature may notify the host that
originally took over the MAC address that it is no longer
responsible for this MAC address (i.e. processing network
frames directed to the take-over MAC address). This may be
accomplished by using a new adapter initiated layer 2 SET-
GROUPPARMS: UNREGISTER_LOCAL_MAC_AD-
DRESS, described above. When a z/VM host (as an example)
receives this asynchronous notification, it may remove the
specified MAC address it took over from its LAN hash table.
Now that another VSwitch may be handling data transfer for
this MAC address, the take-over host may no longer receive
any Ethernet frames for this MAC address. The new SET-
GROUPPARMS: UNREGISTER_LOCAL_MAC_AD-
DRESS notification can provide a way for z/VM to clean up
after a recovery action. The following information may be
reflected back with a SETGROUPPARMS:
UNREGISTER_LOCAL_MAC_ADDRESS whenever an
OSA Express feature changes a MAC address Type from
“take-over” to “host™:

8 Byte Host Name of host taking back the MAC address

6 Byte Host Unicast MAC address of the host taking back
the MAC address

Take-back Device Address and Port Number

Array of Unicast and Multicast take-back MAC addresses

Host MAC Address Registration Rule Change—The rules
for duplicate MAC address detection when a host attempts to
register a MAC address that may be already registered in the
OSA Express feature can differ depending on how the cur-
rently registered MAC address was registered. The following
outlines the new actions taken when a host attempts to register
a MAC address on a network connection which may be
already registered on the same or different network connec-
tion on the OSA Express feature:

If the hardware registered MAC address type is Host Reg-
istered, and a host attempts to register the same MAC address,
a “Duplicate MAC Address” x'2005' may be reflected (as is
currently done). If the hardware registered MAC address type
is Take-over MAC, then if a host attempts to register the same
MAC address, the following can be performed:

1. Change the connection ID for the MAC address to the

new network connection.

2. Change the MAC address from “take-over” to “host”.

3. Reflect a “Success” Return Code x'0000'

4. Notify the network connection which had the “take-
over” MAC address registered that the MAC address has
been removed via the adapter initiated

VLAN Handling for Take-Over—The network connec-
tions making up a logical group may each register their own
set of VLANs depending on the configuration of the guests
using the virtual switch. Therefore, one network connection
may not be registered for the same set of VLLANSs as another.
Under normal operations, OSA may forward VLLAN-tagged
frames only to connections that have registered that specific
VLAN, also taking into consideration whether that network
connection has registered the destination MAC address of the

10

15

20

25

30

35

40

45

50

55

60

65

28

frame for unicast and multicast (for a broadcast, OSA may
forward the frame if the host has registered the matching
VLAN).

In the case of a frame where the destination may be a
take-over MAC address, OSA may forward a frame to the
take-over connection regardless of the VLLAN tag, if any. This
may allow the host to encapsulate and forward the VL AN-
tagged frame over its IVL to the destination. z/VM (as one
example) may take responsibility for VLAN enforcement at
the destination VM image.

Described herein are example processes for configuring
and using a link aggregation group in a computing environ-
ment. FIG. 18 provides an example such process. The process
begins by establishing virtual switches of a host system
(1802). The virtual switches may be established by, for
instance, processor(s) of a host system, such as a central
electronics complex. Each virtual switch of the virtual
switches may include a respective virtual switch port that is
grouped within a shared port group of virtual switch ports.
The virtual switch ports of the shared port group may be in
communication with a common physical network adapter of
the host system. After the virtual switches are established, the
virtual switch ports of the shared port group may share a
single physical port of the physical network adapter as part of
a common physical link aggregation group (1804).

The virtual switches may be dispersed within multiple
logical partitions of the host system, for instance. LAG vir-
tualization components, such as an IVL, may be provided
within the multiple logical partitions, and the LAG virtual-
ization components of the multiple logical partitions may
communicate with each other to facilitate administration
LAG-related protocols, for instance link aggregation control
protocol (LACP) and LAG marker protocol of the physical
LAG. This administration may be facilitated based on shared
port group configuration information, which may be available
to all virtual switch ports of the shared port group, and further
based on virtual switch network connection status informa-
tion from the physical network adapter.

The physical LAG may be deployed, at least in part, by a
virtual switch port of the shared port group, by establishing a
network connection to the physical network adapter and ini-
tiating transitioning of the physical network adapter into a
port group membership control mode in which the shared port
group is registered with the physical network adapter for
participation within the physical LAG.

A virtual switch port of the shared port group may serve as
an active LAG port controller of the single physical port. The
active LAG port controller may perform link aggregation
control protocol (LACP) management and LAG marker man-
agement for the physical LAG on behalf of the shared port
group. One or more (or all) other virtual switch ports of the
shared port group may serve as standby LLAG port controllers
for taking over as the active LAG port controller if requested.

Marker management, for instance LAG marker manage-
ment performed by the active LAG port controller, may
include coordinating, by the active LAG port controller in
response to receipt of a LAG marker protocol data unit (PDU)
communication from the physical network adapter, LAG
marker PDU responses sent in response to the LAG marker
PDU communication. The LAG marker PDU responses may
be sent from the standby LAG port controller(s) of the shared
port group, and the standby LAG port controller(s) may pro-
vide the LAG marker PDU response(s) to the active LAG port
controller. The active LAG port controller may await receipt
of'a LAG marker PDU response from each standby LAG port
controller of the standby LAG port controller(s) of the shared
port group. Based on the active LAG port controller receiving

US 9,300,592 B2

29
a LAG marker PDU response from each standby LAG port
controller of the standby LLAG port controller(s) of the shared
port group, the active LAG port controller may generate and
send a LAG marker PDU response to the physical network
adapter responding to the LAG marker PDU communication.

The active LAG port controller and the standby LAG port
controller(s) may concurrently send and receive data through
the single physical port in communicating data of the physical
LAG.

Each standby LAG port controller of the standby LAG port
controller(s) of the shared port group may receive LACP
protocol transmissions from the physical network adapter or
from the active LAG port controller and maintain at least
some information of the LACP protocol transmissions to
facilitate taking over as the active LAG port controller. Based
on an indication from the physical network adapter, a standby
LAG port controller of the standby LAG port controller(s)
may assume responsibility as active LAG port controller for
the shared port group, in which the standby LAG port con-
troller becomes the active LAG port controller for the group
(i.e. takes over for the current active LAG port controller).
Performance of LACP management and [LAG marker man-
agement for the physical LAG on behalf of the shared port
group may transition to the standby LAG port controller that
assumes responsibility as the active LAG port controller.
Further, the (now) active LAG port controller (the standby
LAG port controller that takes over as active LAG port con-
troller) may present to a partner switch to which the physical
network adapter is connected a same port identifier as that
presented by a previous active LAG port controller (for
instance the LAG port controller that was the active LAG port
controller for the shared port group just prior to the standby
LAG port controller taking over as active LAG port control-
ler), to facilitate transitioning of the LACP management and
LAG marker management to the active LAG port controller
transparent to the partner switch.

The shared port group may include a first shared port group
and the physical network adapter may include a first physical
network adapter of the host system. In these situations, a
second shared port group may be established that includes
other virtual switch ports of the virtual switches. The other
virtual switch ports of the second shared port group may be
different from the virtual switch ports of the first shared port
group, and each virtual switch port of the second shared port
group may share a single physical port of a second physical
network adapter different from the first physical network
adapter, where both the first physical network adapter and the
second physical network adapter are part of the common
physical LAG.

Further described herein are example processes for han-
dling network frames in a computing environment. An
example such process is described with reference to FIG. 19.
The process begins by receiving a request to take over pro-
cessing of network frames (1902). The request may be
received from a physical network adapter of a computing
environment by a first component of the computing environ-
ment. The request may be, for instance, a request that the first
component take over processing of network frames directed
to network frame address(es) associated with a second com-
ponent of the computing environment. The first component
may register the network frame address(es) for processing of
network frames directed to the network frame address(es)
(1904). Based on the first component receiving from the
physical network adapter a network frame directed to a net-
work frame address of the network frame address(es) associ-
ated with the second component, the first component may
process the received network frame (1906). The processing

40

45

50

55

30

may include providing the network frame to the second com-
ponent via an inter-component link between the first compo-
nent and the second component.

In some examples, the first component includes a first
virtual switch and the second component includes a second
virtual switch different from the first virtual switch. The first
virtual switch and the second virtual switch may share a
single physical port of the physical network adapter as part of
a common physical link aggregation group. The request may
be received by the first virtual switch based on a failure of a
network connection between the second virtual switch and
the physical network adapter. Processing by the first virtual
switch may provide the received network frame to the second
virtual switch transparent to a partner switch to which the
physical network adapter is connected, the partner switch
being a partner switch of a link aggregation group.

The one or more network frame addresses may include
media access control (MAC) address(es). In these situations,
the registering may include adding the MAC address(es) to a
network hash table of the first component and indicating the
one or more MAC addresses as being take-over MAC
addresses, in which a take-over MAC address indicates that
network frames received by the first component are to be
directed to another component of the computing environ-
ment.

The processing of the received network frame may further
include determining whether the network frame address to
which the received network frame is directed is registered in
a network hash table of the first component and indicated as
being a take-over network frame address indicating that the
network frame is to be directed to another component of the
computing environment. Based on determining that the net-
work frame address is registered in the network hash table and
indicated as a take-over network frame address, the providing
of the network frame to the second component may be per-
formed.

The first component may be associated with a first hyper-
visor of a host system of the computing environment and the
second component may be associated with a second hypervi-
sor of the host system. In these situations, the inter-compo-
nent link may include a communication channel between the
first hypervisor and the second hypervisor, and the network
frame may be provided from the first component to the second
component through the first hypervisor and the second hyper-
visor across the communication channel.

The first component may receive from the physical net-
work adapter a request to cease processing of network frames
directed to the one or more network frame addresses associ-
ated with the second component. This may be received based
on, for instance, a failed network connection between the
second component and the physical network adapter return-
ing to a working status. Accordingly, and returning to FIG. 19,
based on the first component receiving from the physical
network adapter a request to cease processing of network
frames directed to the one or more network frame addresses
associated with the second component, each network frame
address of the network frame address(es) may be deregistered
from a network hash table of the first component (1908), and
the process may end.

FIGS. 20A-20D provide further details of Multi-VSwitch
LAG configuration functions, in accordance with aspects
described herein. FIG. 20A depicts example operational flow
and data exchange between a joining z/VM Global VSwitch
member joining a virtual LAG and an OSA Express feature.
FIG. 20A shows the communications flow used to establish a
Multi-VSwitch LAG Port Group between a zZVM VSwitch
and an OSA adapter. The flow is initiated by the zVM

US 9,300,592 B2

31

VSwitch, and the OSA adapter verifies the zZVM VSwitch
attributes. 2002 indicates operational flow of the joining
7z/VM Global VSwitch member, while 2004 indicates opera-
tional flow of the OSA Express feature with respect to the
joining Global VSwitch member. FIG. 20A further depicts
example operational flow and data exchange between the
other z/VM Global VSwitch members of the virtual LAG and
the OSA Express feature. 2006 indicates operational flow of
each of the other z’VM Global VSwitch members, while 2008
indicates operational flow of the OSA Express feature with
respect to these other Global VSwitch members.

FIG. 20B depicts example operational flow and data
exchange between a leaving z/VM Global VSwitch member
leaving a virtual LAG and an OSA Express feature. 2010
indicates operational flow of the leaving z/VM Global
VSwitch member, while 2014 indicates operational flow of
the OSA Express feature with respect to the leaving member.
FIG. 20B further depicts example operational flow and data
exchange between the other zVM Global VSwitch members
of the virtual LAG and the OSA Express feature. 2012 indi-
cates operational flow of each of the other ZVM Global
VSwitch members, while 2016 indicates operational flow of
the OS A Express feature with respect to these other members.

FIG. 20C depicts example operational flow and data
exchange between a z/VM Global VSwitch member and the
Virtual LAG Controller in the OSA Express feature to dis-
connect a port on the VSwitch from the LAG. This operation
removes all uplink ports (network connections) associated
with associated Global VSwitch. 2018 indicates operational
flow of the z/VM Global VSwitch member having the discon-
necting uplink port, while 2020 indicates operational flow of
the OSA Express feature with respect to that Global VSwitch
member. FIG. 20C further depicts example operational flow
and data exchange between the other zZVM Global VSwitch
members of the virtual LAG and the OSA Express feature.
2022 indicates operational flow of each of the other Z/VM
Global VSwitch members, while 2024 indicates operational
flow of the OSA Express feature with respect to these Global
VSwitch members.

FIG. 20D depicts example operational flow and data
exchange between a Virtual LAG Controller in the OSA
express feature and a Z’VM Global VSwitch for a MAC
address take-over and a MAC address bake-back scenario.
2026 indicates operational flow of the zZVM Global VSwitch
member having the failing/failed network connection and the
z/VM Global VSwitch member selected for take-over, while
2028 indicates operational flow of the OSA Express feature
and data exchange with respect to these Global VSwitch
members. FIG. 20D further depicts example operational flow
and data exchange of these Global VSwitch members and the
OSA Express feature after the Global VSwitch member hav-
ing the failing/failed network connection attempts to rejoin
the group. 2030 indicates operational flow of the Global
VSwitch member attempting to rejoin the group, while 2032
indicates operational flow of the OSA Express feature with
respect to this Global VSwitch member. 2034 indicates
operational flow of the Global VSwitch member selected for
take-over, while 2036 indicates operational flow of the OSA
Express feature with respect to that Global VSwitch member.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion. Referring to FIG. 21, in one example, a computer pro-
gram product 2100 includes, for instance, one or more non-
transitory computer readable storage media 2102 to store

10

15

20

25

30

35

40

45

50

55

60

65

32

computer readable program code means, logic and/or instruc-
tions 2104 thereon to provide and facilitate one or more
embodiments.

A computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program

US 9,300,592 B2

33

instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more execut-
able instructions for implementing the specified logical func-
tion(s). In some alternative implementations, the functions
noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

In addition to the above, one or more aspects may be
provided, offered, deployed, managed, serviced, etc. by a
service provider who offers management of customer envi-
ronments. For instance, the service provider can create, main-
tain, support, etc. computer code and/or a computer infra-
structure that performs one or more aspects for one or more
customers. In return, the service provider may receive pay-
ment from the customer under a subscription and/or fee
agreement, as examples. Additionally or alternatively, the
service provider may receive payment from the sale of adver-
tising content to one or more third parties.

10

20

25

30

35

40

45

55

34

In one aspect, an application may be deployed for perform-
ing one or more embodiments. As one example, the deploying
of an application comprises providing computer infrastruc-
ture operable to perform one or more embodiments.

As a further aspect, a computing infrastructure may be
deployed comprising integrating computer readable code into
a computing system, in which the code in combination with
the computing system is capable of performing one or more
embodiments.

As yet a further aspect, a process for integrating computing
infrastructure comprising integrating computer readable code
into a computer system may be provided. The computer sys-
tem comprises a computer readable medium, in which the
computer medium comprises one or more embodiments. The
code in combination with the computer system is capable of
performing one or more embodiments.

Although various embodiments are described above, these
are only examples. For example, computing environments of
other architectures can be used to incorporate and use one or
more embodiments. Further, different instructions, instruc-
tion formats, instruction fields and/or instruction values may
be used. Yet further, other limits may be provided and/or used
in differing ways. Many variations are possible.

Further, other types of computing environments can benefit
and be used. As an example, a data processing system suitable
for storing and/or executing program code is usable that
includes at least two processors coupled directly or indirectly
to memory elements through a system bus. The memory
elements include, for instance, local memory employed dur-
ing actual execution of the program code, bulk storage, and
cache memory which provide temporary storage of at least
some program code in order to reduce the number of times
code must be retrieved from bulk storage during execution.

Input/Output or I/O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
1/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems, and Ethernet cards are just a
few of the available types of network adapters.

Referring to FIG. 22, representative components of a Host
Computer system 2200 to implement one or more embodi-
ments are portrayed. The representative host computer 2200
comprises one or more CPUs 2201 in communication with
computer memory (i.e., central storage) 2202, as well as [/O
interfaces to storage media devices 2211 and networks 2210
for communicating with other computers or SANs and the
like. The CPU 2201 is compliant with an architecture having
an architected instruction set and architected functionality.
The CPU 2201 may have access register translation (ART)
2212, which includes an ART lookaside buffer (ALB) 2213,
for selecting an address space to be used by dynamic address
translation (DAT) 2203 for transforming program addresses
(virtual addresses) into real addresses of memory. A DAT
typically includes a translation lookaside buffer (TLB) 2207
for caching translations so that later accesses to the block of
computer memory 2202 do not require the delay of address
translation. Typically, a cache 2209 is employed between
computer memory 2202 and the processor 2201. The cache
2209 may be hierarchical having a large cache available to
more than one CPU and smaller, faster (lower level) caches
between the large cache and each CPU. In some implemen-
tations, the lower level caches are splitto provide separate low
level caches for instruction fetching and data accesses.

US 9,300,592 B2

35

In one embodiment, an instruction is fetched from memory
2202 by an instruction fetch unit 2204 via a cache 2209. The
instruction is decoded in an instruction decode unit 2206 and
dispatched (with other instructions in some embodiments) to
instruction execution unit or units 2208. Typically several
executionunits 2208 are employed, for example an arithmetic
execution unit, a floating point execution unit and a branch
instruction execution unit. The instruction is executed by the
execution unit, accessing operands from instruction specified
registers or memory as needed. If an operand is to be accessed
(loaded or stored) from memory 2202, a load/store unit 2205
typically handles the access under control of the instruction
being executed. Instructions may be executed in hardware
circuits or in internal microcode (firmware) or by a combina-
tion of both.

As noted, a computer system includes information in local
(or main) storage, as well as addressing, protection, and ref-
erence and change recording. Some aspects of addressing
include the format of addresses, the concept of address
spaces, the various types of addresses, and the manner in
which one type of address is translated to another type of
address. Some of main storage includes permanently
assigned storage locations. Main storage provides the system
with directly addressable fast-access storage of data. Both
data and programs are to be loaded into main storage (from
input devices) before they can be processed.

Main storage may include one or more smaller, faster-
access buffer storages, sometimes called caches. A cache is
typically physically associated with a CPU or an 1/O proces-
sor. The effects, except on performance, of the physical con-
struction and use of distinct storage media are generally not
observable by the program.

Separate caches may be maintained for instructions and for
data operands. Information within a cache is maintained in
contiguous bytes on an integral boundary called a cache block
or cache line (or line, for short).

Storage is viewed as a long horizontal string of bits. For
most operations, accesses to storage proceed in a left-to-right
sequence. The string of bits is subdivided into units of eight
bits. An eight-bit unit is called a byte, which is the basic
building block of all information formats. Each byte location
in storage is identified by a unique nonnegative integer, which
is the address of that byte location or, simply, the byte address.
Adjacent byte locations have consecutive addresses, starting
with 0 on the left and proceeding in a left-to-right sequence.
Addresses are unsigned binary integers and are 24, 31, or 64
bits.

Information is transmitted between storage and a CPU or a
channel subsystem one byte, or a group of bytes, at a time.
Unless otherwise specified, in, for instance, the z/Architec-
ture, a group of bytes in storage is addressed by the lefimost
byte of the group. The number of bytes in the group is either
implied or explicitly specified by the operation to be per-
formed. When used in a CPU operation, a group of bytes is
called a field. Within each group of bytes, in, for instance, the
7/Architecture, bits are numbered in a left-to-right sequence.
In the z/ Architecture, the leftmost bits are sometimes referred
to as the “high-order” bits and the rightmost bits as the “low-
order” bits. Bit numbers are not storage addresses, however.
Only bytes can be addressed. To operate on individual bits of
abyte in storage, the entire byte is accessed. The bits in a byte
are numbered O through 7, from left to right (in, e.g., the
7/Architecture). The bits in an address may be numbered 8-31
or 40-63 for 24-bit addresses, or 1-31 or 33-63 for 31-bit
addresses; they are numbered 0-63 for 64-bit addresses. In
one example, bits 8-31 and 1-31 apply to addresses that are in
a location (e.g., register) that is 32 bits wide, whereas bits

10

15

20

25

30

35

40

45

50

55

60

65

36

40-63 and 33-63 apply to addresses that are in a 64-bit wide
location. Within any other fixed-length format of multiple
bytes, the bits making up the format are consecutively num-
bered starting from 0. For purposes of error detection, and
preferably for correction, one or more check bits may be
transmitted with each byte or with a group of bytes. Such
check bits are generated automatically by the machine and
cannot be directly controlled by the program. Storage capaci-
ties are expressed in number of bytes. When the length of a
storage-operand field is implied by the operation code of an
instruction, the field is said to have a fixed length, which can
be one, two, four, eight, or sixteen bytes. Larger fields may be
implied for some instructions. When the length of a storage-
operand field is not implied but is stated explicitly, the field is
said to have a variable length. Variable-length operands can
vary in length by increments of one byte (or with some
instructions, in multiples of two bytes or other multiples).
When information is placed in storage, the contents of only
those byte locations are replaced that are included in the
designated field, even though the width of the physical path to
storage may be greater than the length of the field being
stored.

Certain units of information are to be on an integral bound-
ary in storage. A boundary is called integral for a unit of
information when its storage address is a multiple of the
length of the unitin bytes. Special names are given to fields of
2,4, 8,16, and 32 bytes on an integral boundary. A halfword
is a group of two consecutive bytes on a two-byte boundary
and is the basic building block of instructions. A word is a
group of four consecutive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes on an eight-
byte boundary. A quadword is a group of 16 consecutive bytes
on a 16-byte boundary. An octoword is a group of 32 con-
secutive bytes on a 32-byte boundary. When storage
addresses designate halfwords, words, doublewords, quad-
words, and octowords, the binary representation of the
address contains one, two, three, four, or five rightmost zero
bits, respectively. Instructions are to be on two-byte integral
boundaries. The storage operands of most instructions do not
have boundary-alignment requirements.

On devices that implement separate caches for instructions
and data operands, a significant delay may be experienced if
the program stores into a cache line from which instructions
are subsequently fetched, regardless of whether the store
alters the instructions that are subsequently fetched.

In one example, the embodiment may be practiced by
software (sometimes referred to licensed internal code, firm-
ware, micro-code, milli-code, pico-code and the like, any of
which would be consistent with one or more embodiments).
Referring to FIG. 22, software program code which embodies
one or more aspects may be accessed by processor 2201 ofthe
host system 2200 from long-term storage media devices
2211, such as a CD-ROM drive, tape drive or hard drive. The
software program code may be embodied on any of a variety
ofknown media foruse with a data processing system, such as
a diskette, hard drive, or CD-ROM. The code may be distrib-
uted on such media, or may be distributed to users from
computer memory 2202 or storage of one computer system
over a network 2210 to other computer systems for use by
users of such other systems.

The software program code includes an operating system
which controls the function and interaction of the various
computer components and one or more application programs.
Program code is normally paged from storage media device
2211 to the relatively higher-speed computer storage 2202
where it is available for processing by processor 2201. The
techniques and methods for embodying software program

US 9,300,592 B2

37

code in memory, on physical media, and/or distributing soft-
ware code via networks are well known and will not be further
discussed herein. Program code, when created and stored on
a tangible medium (including but not limited to electronic
memory modules (RAM), flash memory, Compact Discs
(CDs), DVDs, Magnetic Tape and the like is often referred to
as a “computer program product”. The computer program
product medium is typically readable by a processing circuit
preferably in a computer system for execution by the process-
ing circuit.

FIG. 23 illustrates a representative workstation or server
hardware system in which one or more embodiments may be
practiced. The system 2320 of FIG. 23 comprises a represen-
tative base computer system 2321, such as a personal com-
puter, a workstation or a server, including optional peripheral
devices. The base computer system 2321 includes one or
more processors 2326 and a bus employed to connect and
enable communication between the processor(s) 2326 and the
other components of the system 2321 in accordance with
known techniques. The bus connects the processor 2326 to
memory 2325 and long-term storage 2327 which can include
a hard drive (including any of magnetic media, CD, DVD and
Flash Memory for example) or a tape drive for example. The
system 2321 might also include a user interface adapter,
which connects the microprocessor 2326 via the bus to one or
more interface devices, such as a keyboard 2324, a mouse
2323, a printer/scanner 2330 and/or other interface devices,
which can be any user interface device, such as a touch
sensitive screen, digitized entry pad, etc. The bus also con-
nects a display device 2322, such as an LCD screen or moni-
tor, to the microprocessor 2326 via a display adapter.

The system 2321 may communicate with other computers
or networks of computers by way of a network adapter
capable of communicating 2328 with a network 2329.
Example network adapters are communications channels,
token ring, Ethernet or modems. Alternatively, the system
2321 may communicate using a wireless interface, such as a
CDPD (cellular digital packet data) card. The system 2321
may be associated with such other computers in a Local Area
Network (LAN) or a Wide Area Network (WAN), or the
system 2321 can be a client in a client/server arrangement
with another computer, etc. All of these configurations, as
well as the appropriate communications hardware and soft-
ware, are known in the art.

FIG. 24 illustrates a data processing network 2440 in which
one or more embodiments may be practiced. The data pro-
cessing network 2440 may include a plurality of individual
networks, such as a wireless network and a wired network,
each of which may include a plurality of individual worksta-
tions 2441,2442. 2443, 2444. Additionally, as those skilled in
the art will appreciate, one or more LANs may be included,
where a LAN may comprise a plurality of intelligent work-
stations coupled to a host processor.

Still referring to FIG. 24, the networks may also include
mainframe computers or servers, such as a gateway computer
(client server 2446) or application server (remote server 2448
which may access a data repository and may also be accessed
directly from a workstation 2445). A gateway computer 2446
serves as a point of entry into each individual network. A
gateway is needed when connecting one networking protocol
to another. The gateway 2446 may be preferably coupled to
another network (the Internet 2447 for example) by means of
a communications link. The gateway 2446 may also be
directly coupled to one or more workstations 2441, 2442,
2443, 2444 using a communications link. The gateway com-

10

15

20

25

30

35

40

45

50

55

60

65

38

puter may be implemented utilizing an IBM eServer System
z server available from International Business Machines Cor-
poration.

Referring concurrently to FIG. 23 and FIG. 24, software
programming code 2331 which may embody one or more
aspects may be accessed by the processor 2326 of the system
2320 from long-term storage media 2327, such as a CD-ROM
drive or hard drive. The software programming code may be
embodied on any of a variety of known media for use with a
data processing system, such as a diskette, hard drive, or
CD-ROM. The code may be distributed on such media, or
may be distributed to users 2450, 2451 from the memory or
storage of one computer system over a network to other
computer systems for use by users of such other systems.

Alternatively, the programming code may be embodied in
the memory 2325, and accessed by the processor 2326 using
the processor bus. Such programming code includes an oper-
ating system which controls the function and interaction of
the various computer components and one or more applica-
tion programs 2332. Program code is normally paged from
storage media 2227 to high-speed memory 23225 where it is
available for processing by the processor 2326. The tech-
niques and methods for embodying software programming
code in memory, on physical media, and/or distributing soft-
ware code via networks are well known and will not be further
discussed herein. Program code, when created and stored on
a tangible medium (including but not limited to electronic
memory modules (RAM), flash memory, Compact Discs
(CDs), DVDs, Magnetic Tape and the like is often referred to
as a “computer program product”. The computer program
product medium is typically readable by a processing circuit
preferably in a computer system for execution by the process-
ing circuit.

The cache that is most readily available to the processor
(normally faster and smaller than other caches of the proces-
sor) is the lowest (L1 or level one) cache and main store (main
memory) is the highest level cache (L3 if there are 3 levels).
The lowest level cache is often divided into an instruction
cache (I-Cache) holding machine instructions to be executed
and a data cache (D-Cache) holding data operands.

Referring to FIG. 25, an exemplary processor embodiment
is depicted for processor 2526. Typically one or more levels of
cache 2553 are employed to buffer memory blocks in order to
improve processor performance. The cache 2553 is a high
speed buffer holding cache lines of memory data that are
likely to be used. Typical cache lines are 64, 128 or 256 bytes
of memory data. Separate caches are often employed for
caching instructions than for caching data. Cache coherence
(synchronization of copies of lines in memory and the caches)
is often provided by various “snoop” algorithms well known
in the art. Main memory storage 2525 of a processor system
is often referred to as a cache. In a processor system having 4
levels of cache 2553, main storage 2525 is sometimes referred
to as the level 5 (L5) cache since it is typically faster and only
holds a portion of the non-volatile storage (DASD, tape etc)
that is available to a computer system. Main storage 2525
“caches” pages of data paged in and out of the main storage
2525 by the operating system.

A program counter (instruction counter) 2561 keeps track
of the address of the current instruction to be executed. A
program counter in a z/Architecture processor is 64 bits and
can be truncated to 31 or 24 bits to support prior addressing
limits. A program counter is typically embodied in a PSW
(program status word) of a computer such that it persists
during context switching. Thus, a program in progress, hav-
ing a program counter value, may be interrupted by, for
example, the operating system (context switch from the pro-

US 9,300,592 B2

39

gram environment to the operating system environment). The
PSW of the program maintains the program counter value
while the program is not active, and the program counter (in
the PSW) of the operating system is used while the operating
system is executing. Typically, the program counter is incre-
mented by an amount equal to the number of bytes of the
current instruction. RISC (Reduced Instruction Set Comput-
ing) instructions are typically fixed length while CISC (Com-
plex Instruction Set Computing) instructions are typically
variable length. Instructions of the IBM z/Architecture are
CISC instructions having a length of 2, 4 or 6 bytes. The
Program counter 2561 is modified by either a context switch
operation or a branch taken operation of a branch instruction
for example. In a context switch operation, the current pro-
gram counter value is saved in the program status word along
with other state information about the program being
executed (such as condition codes), and a new program
counter value is loaded pointing to an instruction of a new
program module to be executed. A branch taken operation is
performed in order to permit the program to make decisions
or loop within the program by loading the result of the branch
instruction into the program counter 5061.

Typically an instruction fetch unit 2555 is employed to
fetch instructions on behalf of the processor 2526. The fetch
unit either fetches “next sequential instructions”, target
instructions of branch taken instructions, or first instructions
of'a program following a context switch. Modern Instruction
fetch units often employ prefetch techniques to speculatively
prefetch instructions based on the likelihood that the
prefetched instructions might be used. For example, a fetch
unit may fetch 16 bytes of instruction that includes the next
sequential instruction and additional bytes of further sequen-
tial instructions.

The fetched instructions are then executed by the processor
2526. In an embodiment, the fetched instruction(s) are passed
to a dispatch unit 2556 of the fetch unit. The dispatch unit
decodes the instruction(s) and forwards information about the
decoded instruction(s) to appropriate units 2557, 2558, 2560.
An execution unit 2557 will typically receive information
about decoded arithmetic instructions from the instruction
fetch unit 2555 and will perform arithmetic operations on
operands according to the opcode of the instruction. Oper-
ands are provided to the execution unit 2557 preferably either
from memory 2525, architected registers 2559 or from an
immediate field of the instruction being executed. Results of
the execution, when stored, are stored either in memory 2525,
registers 2559 or in other machine hardware (such as control
registers, PSW registers and the like).

Virtual addresses are transformed into real addresses using
dynamic address translation 2562 and, optionally, using
access register translation 2563.

A processor 2526 typically has one or more units 2557,
2558, 2560 for executing the function of the instruction.
Referring to FIG. 26A, an execution unit 2657 may commu-
nicate 2671 with architected general registers 2659, a decode/
dispatch unit 2656, a load store unit 2660, and other 2665
processor units by way of interfacing logic 2671. An execu-
tion unit 2657 may employ several register circuits 2667,
2668, 2669 to hold information that the arithmetic logic unit
(ALU) 2666 will operate on. The ALU performs arithmetic
operations such as add, subtract, multiply and divide as well
as logical function such as and, or and exclusive-or (XOR),
rotate and shift. Preferably the ALU supports specialized
operations that are design dependent. Other circuits may pro-
vide other architected facilities 2672 including condition
codes and recovery support logic for example. Typically the
result of an ALU operation is held in an output register circuit

10

15

20

25

30

40

45

50

55

60

40

2670 which can forward the result to a variety of other pro-
cessing functions. There are many arrangements of processor
units, the present description is only intended to provide a
representative understanding of one embodiment.

An ADD instruction for example would be executed in an
execution unit 2657 having arithmetic and logical function-
ality while a floating point instruction for example would be
executed in a floating point execution having specialized
floating point capability. Preferably, an execution unit oper-
ates on operands identified by an instruction by performing an
opcode defined function on the operands. For example, an
ADD instruction may be executed by an execution unit 2657
on operands found in two registers 2659 identified by register
fields of the instruction.

The execution unit 2657 performs the arithmetic addition
on two operands and stores the result in a third operand where
the third operand may be a third register or one of the two
source registers. The execution unit preferably utilizes an
Arithmetic Logic Unit (ALU) 2666 that is capable of per-
forming a variety of logical functions such as Shift, Rotate,
And, Or and XOR as well as a variety of algebraic functions
including any of add, subtract, multiply, divide. Some AL Us
2666 are designed for scalar operations and some for floating
point. Data may be Big Endian (where the least significant
byte is at the highest byte address) or Little Endian (where the
least significant byte is at the lowest byte address) depending
on architecture. The IBM z/Architecture is Big Endian.
Signed fields may be sign and magnitude, 1’s complement or
2’s complement depending on architecture. A 2’s comple-
ment number is advantageous in that the ALU does not need
to design a subtract capability since either a negative value or
a positive value in 2’s complement requires only an addition
within the AL U. Numbers are commonly described in short-
hand, where a 12 bit field defines an address of a 4,096 byte
block and is commonly described as a 4 Kbyte (Kilo-byte)
block, for example.

Referring to FIG. 26B, branch instruction information for
executing a branch instruction is typically sent to a branch
unit 2658 which often employs a branch prediction algorithm
such as a branch history table 5082 to predict the outcome of
the branch before other conditional operations are complete.
The target of the current branch instruction will be fetched
and speculatively executed before the conditional operations
are complete. When the conditional operations are completed
the speculatively executed branch instructions are either com-
pleted or discarded based on the conditions of the conditional
operation and the speculated outcome. A typical branch
instruction may test condition codes and branch to a target
address if the condition codes meet the branch requirement of
the branch instruction, a target address may be calculated
based on several numbers including ones found in register
fields or an immediate field of the instruction for example.
The branch unit 2658 may employ an ALU 2674 having a
plurality of input register circuits 2675, 2676, 2677 and an
output register circuit 2680. The branch unit 2658 may com-
municate 2681 with general registers 2659, decode dispatch
unit 2656 or other circuits 2673, for example.

The execution of a group of instructions can be interrupted
for avariety of reasons including a context switch initiated by
an operating system, a program exception or error causing a
context switch, an I/O interruption signal causing a context
switch or multi-threading activity of a plurality of programs
(in a multi-threaded environment), for example. Preferably a
context switch action saves state information about a cur-
rently executing program and then loads state information
about another program being invoked. State information may
be saved in hardware registers or in memory for example.

US 9,300,592 B2

41

State information preferably comprises a program counter
value pointing to a next instruction to be executed, condition
codes, memory translation information and architected reg-
ister content. A context switch activity can be exercised by
hardware circuits, application programs, operating system
programs or firmware code (microcode, pico-code or licensed
internal code (L.IC)) alone or in combination.

A processor accesses operands according to instruction
defined methods. The instruction may provide an immediate
operand using the value of a portion of the instruction, may
provide one or more register fields explicitly pointing to
either general purpose registers or special purpose registers
(floating point registers for example). The instruction may
utilize implied registers identified by an opcode field as oper-
ands. The instruction may utilize memory locations for oper-
ands. A memory location of an operand may be provided by
a register, an immediate field, or a combination of registers
and immediate field as exemplified by the z/ Architecture long
displacement facility wherein the instruction defines a base
register, an index register and an immediate field (displace-
ment field) that are added together to provide the address of
the operand in memory for example. Location herein typi-
cally implies a location in main memory (main storage)
unless otherwise indicated.

Referring to FIG. 26C, a processor accesses storage using
a load/store unit 2660. The load/store unit 2660 may perform
aload operation by obtaining the address of the target operand
in memory 2653 and loading the operand in a register 2659 or
another memory 2653 location, or may perform a store opera-
tion by obtaining the address of the target operand in memory
2653 and storing data obtained from a register 2659 or
another memory 2653 location in the target operand location
inmemory 2653. The load/store unit 2660 may be speculative
and may access memory in a sequence that is out-of-order
relative to instruction sequence, however the load/store unit
2660 is to maintain the appearance to programs that instruc-
tions were executed in order. A load/store unit 2660 may
communicate 2684 with general registers 2659, decode/dis-
patch unit 2656, cache/memory interface 2653 or other ele-
ments 2683 and comprises various register circuits 2686,
2687, 2688 and 2689, AL.Us 2685 and control logic 2690 to
calculate storage addresses and to provide pipeline sequenc-
ing to keep operations in-order. Some operations may be out
of'order but the load/store unit provides functionality to make
the out of order operations to appear to the program as having
been performed in order, as is well known in the art.

Preferably addresses that an application program “sees”
are often referred to as virtual addresses. Virtual addresses are
sometimes referred to as “logical addresses” and “effective
addresses”. These virtual addresses are virtual in that they are
redirected to physical memory location by one of a variety of
dynamic address translation (DAT) technologies including,
but not limited to, simply prefixing a virtual address with an
offset value, translating the virtual address via one or more
translation tables, the translation tables preferably compris-
ing at least a segment table and a page table alone or in
combination, preferably, the segment table having an entry
pointing to the page table. In the z/Architecture, a hierarchy of
translation is provided including a region first table, a region
second table, a region third table, a segment table and an
optional page table. The performance of the address transla-
tion is often improved by utilizing a translation lookaside
buffer (TLB) which comprises entries mapping a virtual
address to an associated physical memory location. The
entries are created when the DAT translates a virtual address
using the translation tables. Subsequent use of the virtual
address can then utilize the entry of the fast TLB rather than

25

30

40

45

42

the slow sequential translation table accesses. TLB content
may be managed by a variety of replacement algorithms
including LRU (Least Recently used).

In the case where the processor is a processor of a multi-
processor system, each processor has responsibility to keep
shared resources, such as /O, caches, TLBs and memory,
interlocked for coherency. Typically, “snoop” technologies
will be utilized in maintaining cache coherency. In a snoop
environment, each cache line may be marked as being in any
one of a shared state, an exclusive state, a changed state, an
invalid state and the like in order to facilitate sharing.

1/O units 2554 (F1G. 25) provide the processor with means
for attaching to peripheral devices including tape, disc, print-
ers, displays, and networks for example. /O units are often
presented to the computer program by software drivers. In
mainframes, such as the System z from IBM®, channel
adapters and open system adapters are 1/O units of the main-
frame that provide the communications between the operat-
ing system and peripheral devices.

Further, other types of computing environments can benefit
from one or more aspects. As an example, an environment
may include an emulator (e.g., software or other emulation
mechanisms), in which a particular architecture (including,
for instance, instruction execution, architected functions,
such as address translation, and architected registers) or a
subset thereof'is emulated (e.g., on a native computer system
having a processor and memory). In such an environment,
one or more emulation functions of the emulator can imple-
ment one or more embodiments, even though a computer
executing the emulator may have a different architecture than
the capabilities being emulated. As one example, in emula-
tion mode, the specific instruction or operation being emu-
lated is decoded, and an appropriate emulation function is
built to implement the individual instruction or operation.

In an emulation environment, a host computer includes, for
instance, a memory to store instructions and data; an instruc-
tion fetch unit to fetch instructions from memory and to
optionally, provide local buffering for the fetched instruction;
an instruction decode unit to receive the fetched instructions
and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the
instructions. Execution may include loading data into a reg-
ister from memory; storing data back to memory from a
register; or performing some type of arithmetic or logical
operation, as determined by the decode unit. In one example,
each unit is implemented in software. For instance, the opera-
tions being performed by the units are implemented as one or
more subroutines within emulator software.

More particularly, in a mainframe, architected machine
instructions are used by programmers, usually today “C”
programmers, often by way of a compiler application. These
instructions stored in the storage medium may be executed
natively in a 7/ Architecture IBM® Server, or alternatively in
machines executing other architectures. They can be emu-
lated in the existing and in future IBM® mainframe servers
and on other machines of IBM® (e.g., Power Systems servers
and SystemxServers). They can be executed in machines
running [inux on a wide variety of machines using hardware
manufactured by IBM®, Intel®, AMD, and others. Besides
execution on that hardware under a z/ Architecture, Linux can
be used as well as machines which use emulation by Her-
cules, UMX, or FSI (Fundamental Software, Inc), where
generally execution is in an emulation mode. In emulation
mode, emulation software is executed by a native processor to
emulate the architecture of an emulated processor.

The native processor typically executes emulation soft-
ware comprising either firmware or a native operating system

US 9,300,592 B2

43

to perform emulation of the emulated processor. The emula-
tion software is responsible for fetching and executing
instructions of the emulated processor architecture. The emu-
lation software maintains an emulated program counter to
keep track of instruction boundaries. The emulation software
may fetch one or more emulated machine instructions at a
time and convert the one or more emulated machine instruc-
tions to a corresponding group of native machine instructions
for execution by the native processor. These converted
instructions may be cached such that a faster conversion can
be accomplished. Notwithstanding, the emulation software is
to maintain the architecture rules of the emulated processor
architecture so as to assure operating systems and applica-
tions written for the emulated processor operate correctly.
Furthermore, the emulation software is to provide resources
identified by the emulated processor architecture including,
but not limited to, control registers, general purpose registers,
floating point registers, dynamic address translation function
including segment tables and page tables for example, inter-
rupt mechanisms, context switch mechanisms, Time of Day
(TOD) clocks and architected interfaces to I/O subsystems
such that an operating system or an application program
designed to run on the emulated processor, can be run on the
native processor having the emulation software.

A specific instruction being emulated is decoded, and a
subroutine is called to perform the function of the individual
instruction. An emulation software function emulating a
function of an emulated processor is implemented, for
example, in a “C” subroutine or driver, or some other method
of providing a driver for the specific hardware as will be
within the skill of those in the art after understanding the
description of the preferred embodiment. Various software
and hardware emulation patents including, but not limited to
U.S. Pat. No. 5,551,013, entitled “Multiprocessor for Hard-
ware Emulation”, by Beausoleil et al.; and U.S. Pat. No.
6,009,261, entitled “Preprocessing of Stored Target Routines
for Emulating Incompatible Instructions on a Target Proces-
sor”, by Scalzi et al; and U.S. Pat. No. 5,574,873, entitled
“Decoding Guest Instruction to Directly Access Emulation
Routines that Emulate the Guest Instructions”, by Davidian et
al; and U.S. Pat. No. 6,308,255, entitled “Symmetrical Mul-
tiprocessing Bus and Chipset Used for Coprocessor Support
Allowing Non-Native Code to Run in a System”, by Gorishek
et al; and U.S. Pat. No. 6,463,582, entitled “Dynamic Opti-
mizing Object Code Translator for Architecture Emulation
and Dynamic Optimizing Object Code Translation Method”,
by Lethin et al; and U.S. Pat. No. 5,790,825, entitled “Method
for Emulating Guest Instructions on a Host Computer
Through Dynamic Recompilation of Host Instructions”, by
Eric Traut, each of which is hereby incorporated by reference
herein in its entirety; and many others, illustrate a variety of
known ways to achieve emulation of an instruction format
architected for a different machine for a target machine avail-
able to those skilled in the art.

In FIG. 27, an example of an emulated host computer
system 2792 is provided that emulates a host computer sys-
tem 2700' of a host architecture. In the emulated host com-
puter system 2792, the host processor (CPU) 2791 is an
emulated host processor (or virtual host processor) and com-
prises an emulation processor 2793 having a different native
instruction set architecture than that of the processor 2791 of
the host computer 2700'. The emulated host computer system
2792 has memory 2794 accessible to the emulation processor
2793. In the example embodiment, the memory 2794 is par-
titioned into a host computer memory 2796 portion and an
emulation routines 2797 portion. The host computer memory
2796 is available to programs of the emulated host computer

20

25

30

35

40

45

50

55

44

2792 according to host computer architecture. The emulation
processor 2793 executes native instructions of an architected
instruction set of an architecture other than that of the emu-
lated processor 2791, the native instructions obtained from
emulation routines memory 2797, and may access a host
instruction for execution from a program in host computer
memory 2796 by employing one or more instruction(s)
obtained in a sequence & access/decode routine which may
decode the host instruction(s) accessed to determine a native
instruction execution routine for emulating the function of the
host instruction accessed. Other facilities that are defined for
the host computer system 2700 architecture may be emulated
by architected facilities routines, including such facilities as
general purpose registers, control registers, dynamic address
translation and I/O subsystem support and processor cache,
for example. The emulation routines may also take advantage
of functions available in the emulation processor 2793 (such
as general registers and dynamic translation of virtual
addresses) to improve performance ofthe emulation routines.
Special hardware and off-load engines may also be provided
to assist the processor 2793 in emulating the function of the
host computer 2700'.

In a further embodiment, one or more aspects relate to
cloud computing. It is understood in advance that although
this disclosure includes a detailed description on cloud com-
puting, implementation of the teachings recited herein are not
limited to a cloud computing environment. Rather, embodi-
ments of the present invention are capable of being imple-
mented in conjunction with any other type of computing
environment now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and

US 9,300,592 B2

45

reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure includ-
ing network, servers, operating systems, storage, or even
individual application capabilities, with the possible excep-
tion of limited user-specific application configuration set-
tings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for loadbalancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 28, a schematic of an example of a
cloud computing node is shown. Cloud computing node 2810
is only one example of a suitable cloud computing node and
is not intended to suggest any limitation as to the scope of use
or functionality of embodiments of the invention described
herein. Regardless, cloud computing node 2810 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 2810 there is a computer system/
server 2812, which is operational with numerous other gen-
eral purpose or special purpose computing system environ-
ments or configurations. Examples of well-known computing
systems, environments, and/or configurations that may be

30

35

40

45

50

55

60

65

46

suitable for use with computer system/server 2812 include,
but are not limited to, personal computer systems, server
computer systems, thin clients, thick clients, handheld or
laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing environ-
ments that include any of the above systems or devices, and
the like.

Computer system/server 2812 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 2812 may be
practiced in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 28, computer system/server 2812 in
cloud computing node 2810 is shown in the form of a general-
purpose computing device. The components of computer sys-
tem/server 2812 may include, but are not limited to, one or
more processors or processing units 2816, a system memory
2828, and a bus 2818 that couples various system components
including system memory 2828 to processor 2816.

Bus 2818 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus.

Computer system/server 2812 typically includes a variety
of computer system readable media. Such media may be any
available media that is accessible by computer system/server
2812, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 2828 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 2830 and/or cache memory 2832.
Computer system/server 2812 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage sys-
tem 2834 can be provided for reading from and writing to a
non-removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a mag-
netic disk drive for reading from and writing to a removable,
non-volatile magnetic disk (e.g., a “floppy disk™), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 2818 by one or more data media
interfaces. As will be further depicted and described below,
memory 2828 may include at least one program product
having a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

Program/utility 2840, having a set (at least one) of program
modules 2842, may be stored in memory 2828 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,

US 9,300,592 B2

47

and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules 2842
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 2812 may also communicate with
one or more external devices 2814 such as a keyboard, a
pointing device, a display 2824, etc.; one or more devices that
enable a user to interact with computer system/server 2812;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 2812 to communicate with
one or more other computing devices. Such communication
can occur via Input/Output (I/O) interfaces 2822. Still yet,
computer system/server 2812 can communicate with one or
more networks such as a local area network (LAN), a general
wide area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 2820. As depicted, network
adapter 2820 communicates with the other components of
computer system/server 2812 via bus 2818. It should be
understood that although not shown, other hardware and/or
software components could be used in conjunction with com-
puter system/server 2812. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

Referring now to FIG. 29, illustrative cloud computing
environment 2950 is depicted. As shown, cloud computing
environment 2950 comprises one or more cloud computing
nodes 2910 with which local computing devices used by
cloud consumers, such as, for example, personal digital assis-
tant (PDA) or cellular telephone 2954 A, desktop computer
2954B, laptop computer 2954C, and/or automobile computer
system 2954N may communicate. Nodes 2910 may commu-
nicate with one another. They may be grouped (not shown)
physically or virtually, in one or more networks, such as
Private, Community, Public, or Hybrid clouds as described
hereinabove, or a combination thereof. This allows cloud
computing environment 2950 to offer infrastructure, plat-
forms and/or software as services for which a cloud consumer
does not need to maintain resources on a local computing
device. It is understood that the types of computing devices
2954 A-N shown in FIG. 29 are intended to be illustrative only
and that computing nodes 2910 and cloud computing envi-
ronment 2950 can communicate with any type of computer-
ized device over any type of network and/or network addres-
sable connection (e.g., using a web browser).

Referring now to FIG. 30, a set of functional abstraction
layers provided by cloud computing environment 2950 (FIG.
29) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 30 are
intended to be illustrative only and embodiments of the inven-
tion are not limited thereto. As depicted, the following layers
and corresponding functions are provided:

Hardware and software layer 3060 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,

40

45

55

60

48

BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 3062 provides an abstraction layer
from which the following examples of virtual entities may be
provided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 3064 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 3066 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; and transaction
processing.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting. As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising”,
when used in this specification, specify the presence of stated
features, integers, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of one or
more other features, integers, steps, operations, elements,
components and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below, if any, are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
one or more embodiments has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to in the form disclosed. Many modifications
and variations will be apparent to those of ordinary skill in the
art. The embodiment was chosen and described in order to
best explain various aspects and the practical application, and
to enable others of ordinary skill in the art to understand
various embodiments with various modifications as are suited
to the particular use contemplated.

What is claimed is:

1. A computer program product, comprising:

a computer readable storage medium readable by a pro-
cessing circuit and storing instructions for execution by
the processing circuit for performing a method compris-
ing:
establishing a plurality of virtual switches in a host sys-

tem of a computing environment, each virtual switch
of the plurality of virtual switches comprising a

US 9,300,592 B2

49

respective virtual switch port grouped within a shared
port group of virtual switch ports, wherein the virtual
switch ports of the shared port group are in commu-
nication with a common physical network adapter of
multiple physical network adapters of the host sys-
tem; and

sharing, by the virtual switch ports of the shared port
group, a single physical port of the physical network
adapter as part of acommon physical link aggregation
group (LAG) comprising the multiple physical net-
work adapters of the host system as members of the
common physical LAG.

2. The computer program product of claim 1, wherein the
plurality of virtual switches are dispersed within multiple
logical partitions of the host system, and wherein the method
further comprises providing LAG virtualization components
within the multiple logical partitions, wherein the LAG vir-
tualization components of the multiple logical partitions
communicate with each other to facilitate administration of a
link aggregation control protocol (LACP) and LAG marker
protocol of the physical LAG based on shared port group
configuration information and based on virtual switch net-
work connection status information from the physical net-
work adapter.

3. The computer program product of claim 1, wherein the
method further comprises deploying, at least in part by a
virtual switch port of the shared port group, the physical LAG
by establishing a network connection to the physical network
adapter and initiating transitioning of the physical network
adapter into a port group membership control mode in which
the shared port group is registered with the physical network
adapter for participation within the physical LAG.

4. The computer program product of claim 1, wherein a
virtual switch port of the shared port group serves as an active
LAG port controller of the single physical port, the active
LAG port controller performing link aggregation control pro-
tocol (LACP) management and [LAG marker management for
the physical LAG on behalf of the shared port group, and
wherein one or more other virtual switch ports of the shared
port group serve as one or more standby LLAG port controllers
for taking over as the active LAG port controller if requested.

5. The computer program product of claim 4, wherein the
LAG marker management comprises coordinating, by the
active LAG port controller in response to receipt of a LAG
marker protocol data unit (PDU) communication from the
physical network adapter, LAG marker PDU responses sent
in response to the LAG marker PDU communication, the
LAG marker PDU responses being sent from the one or more
standby LAG port controllers of the shared port group,
wherein the one or more standby LAG port controllers pro-
vide the LAG marker PDU responses to the active LAG port
controller and the active LAG port controller awaits receipt of
a LAG marker PDU response from each standby LAG port
controller of the one or more standby LAG port controllers of
the shared port group.

6. The computer program product of claim 5, wherein the
method further comprises, based on the active LAG port
controller receiving a LAG marker PDU response from each
standby LAG port controller of the one or more standby LAG
port controllers of the shared port group, generating and
sending, by the active LAG port controller, a LAG marker
PDU response to the physical network adapter responding to
the LAG marker PDU communication.

7. The computer program product of claim 4, wherein the
active LAG port controller and the one or more standby LAG

25

35

40

45

50

55

60

65

50

port controllers concurrently send and receive data through
the single physical port in communicating data of the physical
LAG.

8. The computer program product of claim 4, wherein each
standby LAG port controller of the one or more standby LAG
port controllers of the shared port group receives LACP pro-
tocol transmissions from the physical network adapter or
from the active LAG port controller and maintains at least
some information of the LACP protocol transmissions to
facilitate taking over as the active LAG port controller.

9. The computer program product of claim 8, wherein the
method further comprises, based on an indication from the
physical network adapter:

assuming responsibility, by a standby LAG port controller

of the one or more standby LLAG port controllers, as
active LAG port controller for the shared port group,
wherein the standby LAG port controller becomes the
active LAG port controller for the group, and wherein
performance of LACP management and LAG marker
management for the physical LAG on behalf of the
shared port group transitions to the standby LAG port
controller that assumes responsibility as the active LAG
port controller; and

presenting, by the active LAG port controller, to a partner

switch to which the physical network adapter is con-
nected, a same port identifier as that presented by the
previous active LAG port controller, to facilitate transi-
tioning of the LACP management and LAG marker
management to the active LAG port controller transpar-
ent to the partner switch.

10. The computer program product of claim 1, wherein the
shared port group comprises a first shared port group and the
physical network adapter comprises a first physical network
adapter of the multiple physical network adapters of the host
system, and wherein the method further comprises establish-
ing a second shared port group comprising other virtual
switch ports of the plurality of virtual switches, different from
the virtual switch ports of the first shared port group, wherein
each virtual switch port of the second shared port group
shares a single physical port of a second physical network
adapter of the multiple physical network adapters, the second
physical network adapter being different from the first physi-
cal network adapter, and wherein the first physical network
adapter and the second physical network adapter are part of
the common physical LAG.

11. A system comprising:

a memory; and

a processor in communications with the memory, wherein

the system is configured to perform a method, the

method comprising:

establishing a plurality of virtual switches in a host sys-
tem of a computing environment, each virtual switch
of the plurality of virtual switches comprising a
respective virtual switch port grouped within a shared
port group of virtual switch ports, wherein the virtual
switch ports of the shared port group are in commu-
nication with a common physical network adapter of
multiple physical network adapters of the host sys-
tem; and

sharing, by the virtual switch ports of the shared port
group, a single physical port of the physical network
adapter as part of a common physical link aggregation
group (LAG) comprising the multiple physical net-
work adapters of the host system as members of the
common physical LAG.

12. The system of claim 11, wherein the plurality of virtual
switches are dispersed within multiple logical partitions of

US 9,300,592 B2

51

the host system, and wherein the method further comprises
providing LAG virtualization components within the mul-
tiple logical partitions, wherein the LAG virtualization com-
ponents of the multiple logical partitions communicate with
each other to facilitate administration of a link aggregation
control protocol (LACP) and LAG marker protocol of the
physical LAG based on shared port group configuration infor-
mation and based on virtual switch network connection status
information from the physical network adapter.

13. The system of claim 11, wherein the method further
comprises deploying, at leastin part by a virtual switch port of
the shared port group, the physical LAG by establishing a
network connection to the physical network adapter and ini-
tiating transitioning of the physical network adapter into a
port group membership control mode in which the shared port
group is registered with the physical network adapter for
participation within the physical LAG.

14. The system of claim 11, wherein a virtual switch port of
the shared port group serves as an active LAG port controller
of the single physical port, the active LAG port controller
performing link aggregation control protocol (LACP) man-
agement and LAG marker management for the physical LAG
on behalf of the shared port group, and wherein one or more
other virtual switch ports of the shared port group serve as one
or more standby LAG port controllers for taking over as the
active LAG port controller if requested.

15. The system of claim 14, wherein the LAG marker
management comprises coordinating, by the active LAG port
controller in response to receipt of a LAG marker protocol
data unit (PDU) communication from the physical network
adapter, LAG marker PDU responses sent in response to the
LAG marker PDU communication, the LAG marker PDU
responses being sent from the one or more standby LAG port
controllers of the shared port group, wherein the one or more
standby LAG port controllers provide the LAG marker PDU
responses to the active LAG port controller and the active
LAG port controller awaits receipt of a LAG marker PDU
response from each standby LLAG port controller of the one or
more standby LAG port controllers of the shared port group.

16. The system of claim 15, wherein the method further
comprises, based on the active LAG port controller receiving

35

40

52

a LAG marker PDU response from each standby LAG port
controller of the one or more standby LAG port controllers of
the shared port group, generating and sending, by the active
LAG port controller, a LAG marker PDU response to the
physical network adapter responding to the LAG marker
PDU communication.

17. The system of claim 14, wherein each standby LAG
port controller of the one or more standby LAG port control-
lers of the shared port group receives LACP protocol trans-
missions from the physical network adapter or from the active
LAG port controller and maintains at least some information
of the LACP protocol transmissions to facilitate taking over
as the active LAG port controller, and wherein the method
further comprises, based on an indication from the physical
network adapter:

assuming responsibility, by a standby LAG port controller

of the one or more standby LLAG port controllers, as
active LAG port controller for the shared port group,
wherein the standby LAG port controller becomes the
active LAG port controller for the group, and wherein
performance of LACP management and LAG marker
management for the physical LAG on behalf of the
shared port group transitions to the standby LAG port
controller that assumes responsibility as the active LAG
port controller; and

presenting, by the active LAG port controller, to a partner

switch to which the physical network adapter is con-
nected, a same port identifier as that presented by the
previous active LAG port controller, to facilitate transi-
tioning of the LACP management and LAG marker
management to the active LAG port controller transpar-
ent to the partner switch.

18. The computer program product of claim 1, wherein the
common physical LAG remains compatible with an Institute
of Electrical and Electronics Engineers (IEEE) link aggrega-
tion group specification.

19. The system of claim 11, wherein the common physical
LAG remains compatible with an Institute of Electrical and
Electronics Engineers (IEEE) link aggregation group speci-
fication.

